Given a number N(1<=N<=2000)., The task is to find the number strings of size N that can be obtained after using characters from āaā to āzā and by processing the given q(1<=q<=200000) queries. For each query given two integers L, R (0<=L<=R<=N) such that substring [L, R] of the generated string of size N must be a palindrome. The task is to process all queries and generate a string of size N such that the substrings of this string defined by all queries are palindrome. The answer can be very large. So, output answer modulo 1000000007. Note: 1-based indexing is considered for the string. Examples:
Input : N = 3 query 1: (1, 2) query 2: (2, 3) Output : 26 Explanation : Substring 1 to 2 should be palindrome and substring 2 to 3 should be palindrome. so, all three characters should be same. so, we can obtain 26 such strings. Input : N = 4 query 1: (1, 3) query 2: (2, 4) Output : 676 Explanation : substring 1 to 3 should be palindrome and substring 2 to 4 should be a palindrome. So, a first and third character should be the same and second and the fourth should be the same. So, we can obtain 26*26 such strings.
Approach : An efficient solution is to use union-find algorithm.
- Find the mid-point of each range (query) and if there are many queries having the same mid-point then only retain that query whose length is max, i.e (where r ā l is max).
- This would have reduced the number of queries to 2*N at max since there is a 2*N number of mid-points in a string of length N.
- Now for each query do union of element l with r, (l + 1) with (r ā 1), (l + 2) with (r ā 2) and so on. We do this because the character which would be put on the index l would be the same as the one we put on index r. Extending this logic to all queries we need to maintain disjoint-set data structure. So basically all the elements of one component of disjoint-set should have the same letter on them.
- After processing all the queries, let the number of disjoint-set components be x, then the answer is 26^x
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!