Thursday, January 9, 2025
Google search engine
HomeData Modelling & AIFind the number of sub arrays in the permutation of first N...

Find the number of sub arrays in the permutation of first N natural numbers such that their median is M

Given an array arr[] containing the permutation of first N natural numbers and an integer M ? N. The task is to find the number of sub-arrays such that the median of the sequence is M. 
The median of a sequence is the value of the element which is in the middle of the sequence after sorting it in non-decreasing order. If the length of the sequence is even, the left of two middle elements is used.
 

Examples:  

Input: a[] = { 2, 4, 5, 3, 1}, M = 4 
Output:
The required sub-arrays are {2, 4, 5}, {4}, {4, 5} and {4, 5, 3}.
 

Input: a[] = { 1, 2, 3, 4, 5}, M = 5 
Output:

Approach: The segment p[l..r] has a median equals M if and only if M belongs to it and less = greater or less = greater – 1, where less is the number of elements in p[l..r] that are strictly less than M and greater is a number of elements in p[l..r] that are strictly greater than M. Here we’ve used a fact that p is a permutation (on p[l..r] there is exactly one occurrence of M).
In other words, M belongs to p[l..r], and the value greater – less equals 0 or 1.
Calculate prefix sums sum[0..n], where sum[i] the value greater-less on the prefix of the length i (i.e., on the subarray p[0..i-1]). For the fixed value r it is easy to calculate the number of so l that p[l..r] is suitable. First, check that M met on [0..r]. Valid values l are such indices that: no M on [0..l-1] and sum[l]=sum[r] or sum[r]=sum[l]+1.
Let’s keep a number of prefix sums sum[i] to the left of M for each value. We can just use a map c, where c[s] is a number of indices l that sum[l]=s and l are to the left of m.
So, for each r that p[0..r] contains m do ans += c[sum] + c[sum – 1], where sum is the current value greater-less.
Below is the implementation of the above approach:

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count of sub-arrays
// in the given permutation of first n natural
// numbers such that their median is m
int segments(int n, int p[], int m)
{
    map<int, int> c;
    c[0] = 1;
    bool has = false;
    int sum = 0;
    long long ans = 0;
    for (int r = 0; r < n; r++) {
 
        // If element is less than m
        if (p[r] < m)
            sum--;
 
        // If element greater than m
        else if (p[r] > m)
            sum++;
 
        // If m is found
        if (p[r] == m)
            has = true;
 
        // Count the answer
        if (has)
            ans += c[sum] + c[sum - 1];
 
        // Increment sum
        else
            c[sum]++;
    }
 
    return ans;
}
 
// Driver code
int main()
{
    int a[] = { 2, 4, 5, 3, 1 };
    int n = sizeof(a) / sizeof(a[0]);
    int m = 4;
    cout << segments(n, a, m);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.HashMap;
 
class GFG
{
 
    // Function to return the count of sub-arrays
    // in the given permutation of first n natural
    // numbers such that their median is m
    public static int segments(int n, int[] p, int m)
    {
        HashMap<Integer, Integer> c = new HashMap<>();
        c.put(0, 1);
        boolean has = false;
        int sum = 0;
        int ans = 0;
        for (int r = 0; r < n; r++)
        {
 
            // If element is less than m
            if (p[r] < m)
                sum--;
 
            // If element greater than m
            else if (p[r] > m)
                sum++;
 
            // If m is found
            if (p[r] == m)
                has = true;
 
            // Count the answer
            if (has)
                ans += (c.get(sum) == null ? 0 :
                        c.get(sum)) +
                       (c.get(sum - 1) == null ? 0 :
                        c.get(sum - 1));
 
            // Increment sum
            else
                c.put(sum, c.get(sum) == null ? 1 :
                           c.get(sum) + 1);
        }
        return ans;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int[] a = { 2, 4, 5, 3, 1 };
        int n = a.length;
        int m = 4;
        System.out.println(segments(n, a, m));
    }
}
 
// This code is contributed by
// sanjeev2552


Python3




# Python3 implementation of the approach
 
# Function to return the count of sub-arrays
# in the given permutation of first n natural
# numbers such that their median is m
def segments(n, p, m):
 
    c = dict()
 
    c[0] = 1
 
    has = False
 
    Sum = 0
 
    ans = 0
 
    for r in range(n):
 
        # If element is less than m
        if (p[r] < m):
            Sum -= 1
 
        # If element greater than m
        elif (p[r] > m):
            Sum += 1
 
        # If m is found
        if (p[r] == m):
            has = True
 
        # Count the answer
        if (has):
            if(Sum in c.keys()):
                ans += c[Sum]
            if Sum-1 in c.keys():
                ans += c[Sum - 1]
 
        # Increment Sum
        else:
            c[Sum] = c.get(Sum, 0) + 1
 
    return ans
 
# Driver code
a = [2, 4, 5, 3, 1]
n = len(a)
m = 4
print(segments(n, a, m))
 
# This code is contributed by mohit kumar


C#




// C# implementation of the approach
using System;
using System.Collections.Generic;            
 
class GFG
{
 
    // Function to return the count of sub-arrays
    // in the given permutation of first n natural
    // numbers such that their median is m
    public static int segments(int n, int[] p, int m)
    {
        Dictionary<int, int> c = new Dictionary<int, int>();
        c.Add(0, 1);
        bool has = false;
        int sum = 0;
        int ans = 0;
        for (int r = 0; r < n; r++)
        {
 
            // If element is less than m
            if (p[r] < m)
                sum--;
 
            // If element greater than m
            else if (p[r] > m)
                sum++;
 
            // If m is found
            if (p[r] == m)
                has = true;
 
            // Count the answer
            if (has)
                ans += (!c.ContainsKey(sum) ? 0 :
                         c[sum]) +
                    (!c.ContainsKey(sum - 1) ? 0 :
                      c[sum - 1]);
 
            // Increment sum
            else
                c.Add(sum, !c.ContainsKey(sum) ? 1 :
                            c[sum] + 1);
        }
        return ans;
    }
 
    // Driver code
    public static void Main(String[] args)
    {
        int[] a = { 2, 4, 5, 3, 1 };
        int n = a.Length;
        int m = 4;
        Console.WriteLine(segments(n, a, m));
    }
}
 
// This code is contributed by 29AjayKumar


PHP




<?php
// PHP implementation of the approach
 
// Function to return the count of sub-arrays
// in the given permutation of first n natural
// numbers such that their median is m
function segments($n, $p, $m)
{
    $c = array();
    $c[0] = 1;
     
    $has = false;
    $sum = 0;
    $ans = 0;
     
    for ($r = 0; $r < $n; $r++)
    {
 
        // If element is less than m
        if ($p[$r] < $m)
            $sum--;
 
        // If element greater than m
        else if ($p[$r] > $m)
            $sum++;
 
        // If m is found
        if ($p[$r] == $m)
            $has = true;
 
        // Count the answer
        if ($has)
            $ans += $c[$sum] + $c[$sum - 1];
 
        // Increment sum
        else
            $c[$sum]++;
    }
 
    return $ans;
}
 
// Driver code
$a = array( 2, 4, 5, 3, 1 );
$n = count($a);
$m = 4;
 
echo segments($n, $a, $m);
 
// This code is contributed by Ryuga
?>


Javascript




<script>
 
// javascript implementation of the approach
 
// Function to return the count of sub-arrays
// in the given permutation of first n natural
// numbers such that their median is m
function segments(n, p, m)
{
    var c = new Map();
    c.set(0,1);
    var hs = false;
    var sum = 0;
    var ans = 0;
    var r;
    for (r = 0; r < n; r++) {
 
        // If element is less than m
        if (p[r] < m)
            sum--;
 
        // If element greater than m
        else if (p[r] > m)
            sum++;
 
        // If m is found
        if (p[r] == m)
            hs = true;
 
        // Count the answer
        if (hs){
            if(c.has(sum) && c.has(sum-1))
              ans += c.get(sum) + c.get(sum - 1);
            else if(c.has(sum))
              ans += c.get(sum);
            else if(c.has(sum-1))
             ans += c.get(sum-1);
        }
 
        // Increment sum
        else{
            if(c.has(sum))
             c.set(sum,c.get(sum)+1);
            else
              c.set(sum,1);
        }
    }
 
    return ans;
}
 
// Driver code
 
    var a = [2, 4, 5, 3, 1];
    var n = a.length;
    var m = 4;
    document.write(segments(n, a, m));
 
</script>


Output: 

4

 

Time Complexity: O(N)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments