Given two integer N and X. N represents the number of rows and columns of a table. And the element at the ith row and the jth column in the table is i*j. The task is to find the number of cells in the table that contains X.
Examples:
Input : N = 6, X = 12
Output : 4
Cells {2, 6}, {3, 4}, {4, 3}, {6, 2} contains the number 12Input : N = 5, X = 11
Output : 0
Approach:
It’s easy to see that number x can appear only once in a row. If x contains in the ith row then the column number will be x/i. x contains in the ith row if x is divisible by i. let’s check that x divides i and x/i <= n. If these conditions met then update the answer.
Below is the implementation of the above approach :
C++
// CPP program to find number of // cells in the table contains X #include <bits/stdc++.h> using namespace std; // Function to find number of // cells in the table contains X int Cells( int n, int x) { int ans = 0; for ( int i = 1; i <= n; i++) if (x % i == 0 && x / i <= n) ans++; return ans; } // Driver code int main() { int n = 6, x = 12; // Function call cout << Cells(n, x); return 0; } |
Java
// Java program to find number of // cells in the table contains X class GFG { // Function to find number of // cells in the table contains X public static int Cells( int n, int x) { int ans = 0 ; for ( int i = 1 ; i <= n; i++) if (x % i == 0 && x / i <= n) ans++; return ans; } // Driver code public static void main(String[] args) { int n = 6 , x = 12 ; // Function call System.out.println(Cells(n, x)); } } // This code is contributed by sanjeev2552 |
Python3
# Python3 program to find number of # cells in the table contains X # Function to find number of # cells in the table contains X def Cells(n, x): ans = 0 ; for i in range ( 1 , n + 1 ): if (x % i = = 0 and x / i < = n): ans + = 1 ; return ans; # Driver code if __name__ = = '__main__' : n = 6 ; x = 12 ; # Function call print (Cells(n, x)); # This code is contributed by 29AjayKumar |
C#
// C# program to find number of // cells in the table contains X using System; class GFG { // Function to find number of // cells in the table contains X static int Cells( int n, int x) { int ans = 0; for ( int i = 1; i <= n; i++) if (x % i == 0 && x / i <= n) ans++; return ans; } // Driver code public static void Main() { int n = 6, x = 12; // Function call Console.WriteLine(Cells(n,x)); } } // This code is contributed by nidhiva |
Javascript
<script> // JavaScript program to find number of // cells in the table contains X // Function to find number of // cells in the table contains X function Cells(n, x) { let ans = 0; for (let i = 1; i <= n; i++) if (x % i == 0 && parseInt(x / i) <= n) ans++; return ans; } // Driver code let n = 6, x = 12; // Function call document.write(Cells(n, x)); </script> |
4
Time Complexity: O(n), since there runs a loop for once from 1 to n.
Auxiliary Space: O(1), since no extra space has been taken.
Approach:
Ignore the cases with negative squares. If n is 0, there won’t be any numbers in the square and if x is 0 it won’t appear in a square, so return 0 in both cases. If x is greater than n^2, it won’t be in the square, so return 0 in that case as well.
Next, loop through all numbers i from 1 to the square root of x, If i is a factor of x and x/i <= n, there are at least two additional places x is on the n-squared chart, due to the associative property: i*(x/i) and (x/i)*i, e.g., if x is 12 and i is 3: 3*4 and 4*3.
Lastly, find out if the square root of x is whole. If it is, it appears one additional time on the diagonal of the n-square table, which is the list of all squares.
| 1 | 2 | 3 | 4 | 5 | 6 |
| 2 | 4 | 6 | 8 | 10 | 12 |
| 3 | 6 | 9 | 12 | 15 | 18 |
| 4 | 8 | 12 | 16 | 20 | 24 |
| 5 | 10 | 15 | 20 | 25 | 30 |
| 6 | 12 | 18 | 24 | 30 | 36 |
Below is the implementation of the above approach :
C++
// C++ program to find number of // cells in the table contains X #include <bits/stdc++.h> using namespace std; // Function to find number of // cells in the table contains X int Cells( int n, int x) { if (n <= 0 || x <= 0 || x > n * n) return 0; int i = 0, count = 0; while (++i * i < x) if (x % i == 0 && x <= n * i) count += 2; return i * i == x ? count + 1 : count; } // Driver code int main() { int n = 6, x = 12; // Function call cout << (Cells(n, x)); return 0; } // This code is contributed by subhammahato348 |
Java
// Java program to find number of // cells in the table contains X class GFG { // Function to find number of // cells in the table contains X public static int Cells( int n, int x) { if (n <= 0 || x <= 0 || x > n * n) return 0 ; int i = 0 , count = 0 ; while (++i * i < x) if (x % i == 0 && x <= n * i) count += 2 ; return i * i == x ? count + 1 : count; } // Driver code public static void main(String[] args) { int n = 6 , x = 12 ; // Function call System.out.println(Cells(n, x)); } } // This code is contributed by stephenbrasel |
Python3
# Python program to find number of # cells in the table contains X # Function to find number of # cells in the table contains X def Cells(n, x): if (n < = 0 or x < = 0 or x > n * n): return 0 ; i = 1 count = 0 while (i * i < x): if (x % i = = 0 and x < = n * i): count + = 2 ; i + = 1 if (i * i = = x): return count + 1 else : return count # Driver Code n = 6 x = 12 print (Cells(n, x)) # This code is contributed by rag2127. |
C#
// C# program to find number of // cells in the table contains X using System; class GFG{ // Function to find number of // cells in the table contains X public static int Cells( int n, int x) { if (n <= 0 || x <= 0 || x > n * n) return 0; int i = 0, count = 0; while (++i * i < x) if (x % i == 0 && x <= n * i) count += 2; return i * i == x ? count + 1 : count; } // Driver code static public void Main () { int n = 6, x = 12; // Function call Console.WriteLine(Cells(n, x)); } } // This code is contributed by kirti |
Javascript
<script> // JavaScript program to find number of // cells in the table contains X // Function to find number of // cells in the table contains X function Cells(n, x) { if (n <= 0 || x <= 0 || x > n * n) return 0; var i = 0, count = 0; while (++i * i < x) if (x % i == 0 && x <= n * i) count += 2; return i * i == x ? count + 1 : count; } // Driver Code var n = 6, x = 12; // Function call document.write(Cells(n, x)); // This code is contributed by Khushboogoyal499 </script> |
4
Time Complexity: O(sqrt(x)), since there runs a loop for once from 1 to n1/2.
Auxiliary Space: O(1), since no extra space has been taken.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!