Given an integer N, the task is to find the Nth pure number.
A pure number has to satisfy three conditions:
1) It has an even number of digits.
2) All digits are either 4 or 5.
3) And the number is a palindrome.
The Pure number series is: 44, 55, 4444, 4554, 5445, 5555, 444444, 445544, 454454, 455554 and so on.
Examples:
Input: 5 Output: 5445 Explanation: 5445 is the 5th pure number in the series. Input: 19 Output: 45444454 Explanation: 45444454 is the 19th pure number in the series.
Approach: We will assume that 2 numbers make one single block. For each block, there is a 2block number of pure numbers. For pure numbers with 1 block, there are 21 pure numbers; for numbers with 2 blocks, there are 22 numbers, and so on.
- Pure numbers starting with 4, start at position 2block – 1 for example, 4444 is at (22 -1 = 3) which means it is, at third position in the series.
- Pure numbers starting with 5 starts at position 2block + 2(block-1) -1 for example, 5555 is at (2^2 + 2^1 -1 =5) which means it is at the fifth position in the series.
A pure number in a block is essentially sandwiched between two 4’s or 5’s and is a combination of all previous block numbers. To understand it better, let’s consider the example below:
- The first pure number is 44 and the second pure number is 55.
- 4444 (“4″+ “44” + “4”) 44 from previous block
- 4554 (“4″+ “55” + “4”) 55 from previous block
- 5445 (“5″+ “44” + “5”) 44 from previous block
- 5555 (“5″+ “55” + “5”) 55 from previous block
This pattern repeats for all the numbers in the series.
Below is the implementation of the above approach:
C++
#include<bits/stdc++.h> using namespace std; // CPP program to find // the Nth pure num // Function to check if it // is a power of 2 or not bool isPowerOfTwo( int N) { double number = log (N)/ log (2); int checker = int (number); return number - checker == 0; } // if a number belongs to 4 series // it should lie between 2^blocks -1 to // 2^blocks + 2^(blocks-1) -1 bool isSeriesFour( int N, int digits) { int upperBound = int ( pow (2, digits)+ pow (2, digits - 1)-1); int lowerBound = int ( pow (2, digits)-1); return (N >= lowerBound) && (N < upperBound); } // Method to find pure number string getPureNumber( int N) { string numbers[N + 1]; numbers[0] = "" ; int blocks = 0; int displacement = 0; // Iterate from 1 to N for ( int i = 1; i < N + 1; i++) { // Check if number is power of two if (isPowerOfTwo(i + 1)) { blocks = blocks + 1; } if (isSeriesFour(i, blocks)) { displacement = int ( pow (2, blocks - 1)); // Distance to previous // block numbers numbers[i] = "4" + numbers[i - displacement] + "4" ; } else { displacement = int ( pow (2, blocks)); // Distance to previous // block numbers numbers[i] = "5" + numbers[i - displacement] + "5" ; } } return numbers[N]; } // Driver Code int main() { int N = 5; string pure = getPureNumber(N); cout << pure << endl; } // This code is contributed by Surendra_Gangwar |
Java
// Java program to find // the Nth pure number import java.io.*; class PureNumbers { // Function to check if it // is a power of 2 or not public boolean isPowerOfTwo( int N) { double number = Math.log(N) / Math.log( 2 ); int checker = ( int )number; return number - checker == 0 ; } // if a number belongs to 4 series // it should lie between 2^blocks -1 to // 2^blocks + 2^(blocks-1) -1 public boolean isSeriesFour( int N, int digits) { int upperBound = ( int )(Math.pow( 2 , digits) + Math.pow( 2 , digits - 1 ) - 1 ); int lowerBound = ( int )(Math.pow( 2 , digits) - 1 ); return (N >= lowerBound) && (N < upperBound); } // Method to find pure number public String getPureNumber( int N) { String[] numbers = new String[N + 1 ]; numbers[ 0 ] = "" ; int blocks = 0 ; int displacement = 0 ; // Iterate from 1 to N for ( int i = 1 ; i < N + 1 ; i++) { // Check if number is power of two if (isPowerOfTwo(i + 1 )) { blocks = blocks + 1 ; } if (isSeriesFour(i, blocks)) { displacement = ( int )Math.pow( 2 , blocks - 1 ); // Distance to previous // block numbers numbers[i] = "4" + numbers[i - displacement] + "4" ; } else { displacement = ( int )Math.pow( 2 , blocks); // Distance to previous // block numbers numbers[i] = "5" + numbers[i - displacement] + "5" ; } } return numbers[N]; } // Driver Code public static void main(String[] args) throws Exception { int N = 5 ; // Create an object of the class PureNumbers ob = new PureNumbers(); // Function call to find the // Nth pure number String pure = ob.getPureNumber(N); System.out.println(pure); } } |
Python3
# Python program to find # the Nth pure num # Function to check if it # is a power of 2 or not import math def isPowerOfTwo(N): number = math.log(N) / math.log( 2 ) checker = math.floor(number) return number - checker = = 0 # if a number belongs to 4 series # it should lie between 2^blocks -1 to # 2^blocks + 2^(blocks-1) -1 def isSeriesFour(N, digits): upperBound = math.floor(math. pow ( 2 , digits) + math. pow ( 2 , digits - 1 ) - 1 ) lowerBound = math.floor(math. pow ( 2 , digits) - 1 ) return (N > = lowerBound) and (N < upperBound) # Method to find pure number def getPureNumber(N): numbers = ["" for i in range (N + 1 )] numbers[ 0 ] = "" blocks = 0 displacement = 0 # Iterate from 1 to N for i in range ( 1 ,N + 1 ): # Check if number is power of two if (isPowerOfTwo(i + 1 )): blocks = blocks + 1 if (isSeriesFour(i, blocks)): displacement = math.floor(math. pow ( 2 , blocks - 1 )) # Distance to previous # block numbers numbers[i] = f "4{numbers[i - displacement]}4" else : displacement = math.floor(math. pow ( 2 , blocks)) # Distance to previous # block numbers numbers[i] = f "5{numbers[i - displacement]}5" return numbers[N] # Driver Code N = 5 pure = getPureNumber(N) print (pure) # This code is contributed by shinjanpatra |
C#
// C# program to find // the Nth pure number using System; class PureNumbers { // Function to check if it // is a power of 2 or not public bool isPowerOfTwo( int N) { double number = Math.Log(N) / Math.Log(2); int checker = ( int )number; return number - checker == 0; } // if a number belongs to 4 series // it should lie between 2^blocks -1 to // 2^blocks + 2^(blocks-1) -1 public bool isSeriesFour( int N, int digits) { int upperBound = ( int )(Math.Pow(2, digits) + Math.Pow(2, digits - 1) - 1); int lowerBound = ( int )(Math.Pow(2, digits) - 1); return (N >= lowerBound) && (N < upperBound); } // Method to find pure number public string getPureNumber( int N) { string [] numbers = new string [N + 1]; numbers[0] = "" ; int blocks = 0; int displacement = 0; // Iterate from 1 to N for ( int i = 1; i < N + 1; i++) { // Check if number is power of two if (isPowerOfTwo(i + 1)) { blocks = blocks + 1; } if (isSeriesFour(i, blocks)) { displacement = ( int )Math.Pow( 2, blocks - 1); // Distance to previous // block numbers numbers[i] = "4" + numbers[i - displacement] + "4" ; } else { displacement = ( int )Math.Pow( 2, blocks); // Distance to previous // block numbers numbers[i] = "5" + numbers[i - displacement] + "5" ; } } return numbers[N]; } // Driver Code public static void Main() { int N = 5; // Create an object of the class PureNumbers ob = new PureNumbers(); // Function call to find the // Nth pure number string pure = ob.getPureNumber(N); Console.Write(pure); } } // This code is contributed by chitranayal |
Javascript
<script> // Javascript program to find // the Nth pure num // Function to check if it // is a power of 2 or not function isPowerOfTwo(N) { let number = Math.log(N)/Math.log(2); let checker = Math.floor(number); return number - checker == 0; } // if a number belongs to 4 series // it should lie between 2^blocks -1 to // 2^blocks + 2^(blocks-1) -1 function isSeriesFour(N, digits) { let upperBound = Math.floor(Math.pow(2, digits) + Math.pow(2, digits - 1)-1); let lowerBound = Math.floor(Math.pow(2, digits)-1); return (N >= lowerBound) && (N < upperBound); } // Method to find pure number function getPureNumber(N) { let numbers = new Array(N + 1); numbers[0] = "" ; let blocks = 0; let displacement = 0; // Iterate from 1 to N for (let i = 1; i < N + 1; i++) { // Check if number is power of two if (isPowerOfTwo(i + 1)) { blocks = blocks + 1; } if (isSeriesFour(i, blocks)) { displacement = Math.floor(Math.pow(2, blocks - 1)); // Distance to previous // block numbers numbers[i] = "4" + numbers[i - displacement] + "4" ; } else { displacement = Math.floor(Math.pow(2, blocks)); // Distance to previous // block numbers numbers[i] = "5" + numbers[i - displacement] + "5" ; } } return numbers[N]; } // Driver Code let N = 5; let pure = getPureNumber(N); document.write(pure + "<br>" ); // This code is contributed by _saurabh_jaiswal </script> |
5445
Time Complexity: O(NlogN) as using pow function in a loop
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!