Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIFind the Nth Pure number

Find the Nth Pure number

Given an integer N, the task is to find the Nth pure number.  

A pure number has to satisfy three conditions: 
1) It has an even number of digits. 
2) All digits are either 4 or 5. 
3) And the number is a palindrome.
The Pure number series is: 44, 55, 4444, 4554, 5445, 5555, 444444, 445544, 454454, 455554 and so on.

Examples: 

Input: 5
Output: 5445
Explanation: 
5445 is the 5th pure number in the series.

Input: 19
Output: 45444454
Explanation: 
45444454 is the 19th pure number in the series. 

Approach: We will assume that 2 numbers make one single block. For each block, there is a 2block number of pure numbers. For pure numbers with 1 block, there are 21 pure numbers; for numbers with 2 blocks, there are 22 numbers, and so on.
 

  • Pure numbers starting with 4, start at position 2block – 1 for example, 4444 is at (22 -1 = 3) which means it is, at third position in the series.
  • Pure numbers starting with 5 starts at position 2block + 2(block-1) -1 for example, 5555 is at (2^2 + 2^1 -1 =5) which means it is at the fifth position in the series.

A pure number in a block is essentially sandwiched between two 4’s or 5’s and is a combination of all previous block numbers. To understand it better, let’s consider the example below: 

  • The first pure number is 44 and the second pure number is 55.
  • 4444 (“4″+ “44” + “4”) 44 from previous block
  • 4554 (“4″+ “55” + “4”) 55 from previous block
  • 5445 (“5″+ “44” + “5”) 44 from previous block
  • 5555 (“5″+ “55” + “5”) 55 from previous block

This pattern repeats for all the numbers in the series.
Below is the implementation of the above approach: 

C++




#include<bits/stdc++.h>
using namespace std;
 
// CPP program to find
// the Nth pure num
 
// Function to check if it
// is a power of 2 or not
bool isPowerOfTwo(int N)
{
    double number = log(N)/log(2);
    int checker = int(number);
    return number - checker == 0;
}
 
// if a number belongs to 4 series
// it should lie between 2^blocks -1 to
// 2^blocks + 2^(blocks-1) -1
bool isSeriesFour(int N, int digits)
{
    int upperBound = int(pow(2, digits)+pow(2, digits - 1)-1);
    int lowerBound = int(pow(2, digits)-1);
    return (N >= lowerBound) && (N < upperBound);
}
 
// Method to find pure number
string getPureNumber(int N)
{
    string numbers[N + 1];
 
    numbers[0] = "";
 
    int blocks = 0;
    int displacement = 0;
 
    // Iterate from 1 to N
    for (int i = 1; i < N + 1; i++) {
 
        // Check if number is power of two
        if (isPowerOfTwo(i + 1)) {
            blocks = blocks + 1;
        }
 
        if (isSeriesFour(i, blocks)) {
            displacement
                = int(pow(2, blocks - 1));
 
            // Distance to previous
            // block numbers
            numbers[i] = "4" + numbers[i - displacement] + "4";
        }
 
        else {
 
            displacement = int(pow(2, blocks));
 
            // Distance to previous
            // block numbers
            numbers[i] = "5" + numbers[i - displacement] + "5";
        }
    }
 
    return numbers[N];
}
 
// Driver Code
int main()
{
    int N = 5;
 
    string pure = getPureNumber(N);
 
    cout << pure << endl;
}
 
// This code is contributed by Surendra_Gangwar


Java




// Java program to find
// the Nth pure number
 
import java.io.*;
 
class PureNumbers {
 
    // Function to check if it
    // is a power of 2 or not
    public boolean isPowerOfTwo(int N)
    {
        double number
            = Math.log(N) / Math.log(2);
        int checker = (int)number;
        return number - checker == 0;
    }
 
    // if a number belongs to 4 series
    // it should lie between 2^blocks -1 to
    // 2^blocks + 2^(blocks-1) -1
    public boolean isSeriesFour(
        int N, int digits)
    {
        int upperBound
            = (int)(Math.pow(2, digits)
                    + Math.pow(2, digits - 1)
                    - 1);
        int lowerBound
            = (int)(Math.pow(2, digits)
                    - 1);
        return (N >= lowerBound)
            && (N < upperBound);
    }
 
    // Method to find pure number
    public String getPureNumber(int N)
    {
        String[] numbers
            = new String[N + 1];
 
        numbers[0] = "";
 
        int blocks = 0;
        int displacement = 0;
 
        // Iterate from 1 to N
        for (int i = 1; i < N + 1; i++) {
 
            // Check if number is power of two
            if (isPowerOfTwo(i + 1)) {
                blocks = blocks + 1;
            }
 
            if (isSeriesFour(i, blocks)) {
                displacement
                    = (int)Math.pow(
                        2, blocks - 1);
 
                // Distance to previous
                // block numbers
                numbers[i]
                    = "4"
                      + numbers[i - displacement]
                      + "4";
            }
            else {
 
                displacement
                    = (int)Math.pow(
                        2, blocks);
 
                // Distance to previous
                // block numbers
                numbers[i]
                    = "5"
                      + numbers[i - displacement]
                      + "5";
            }
        }
 
        return numbers[N];
    }
 
    // Driver Code
    public static void main(String[] args)
        throws Exception
    {
        int N = 5;
 
        // Create an object of the class
        PureNumbers ob = new PureNumbers();
 
        // Function call to find the
        // Nth pure number
        String pure = ob.getPureNumber(N);
 
        System.out.println(pure);
    }
}


Python3




# Python program to find
# the Nth pure num
 
# Function to check if it
# is a power of 2 or not
import math
 
def isPowerOfTwo(N):
    number = math.log(N)/math.log(2)
    checker = math.floor(number)
    return number - checker == 0
 
# if a number belongs to 4 series
# it should lie between 2^blocks -1 to
# 2^blocks + 2^(blocks-1) -1
def isSeriesFour(N, digits):
 
    upperBound = math.floor(math.pow(2, digits) + math.pow(2, digits - 1)-1)
    lowerBound = math.floor(math.pow(2, digits)-1)
    return (N >= lowerBound) and (N < upperBound)
 
 
# Method to find pure number
def getPureNumber(N):
 
    numbers = ["" for i in range(N + 1)]
 
    numbers[0] = ""
 
    blocks = 0
    displacement = 0
 
    # Iterate from 1 to N
    for i in range(1,N + 1):
 
        # Check if number is power of two
        if (isPowerOfTwo(i + 1)):
            blocks = blocks + 1
 
        if (isSeriesFour(i, blocks)):
            displacement = math.floor(math.pow(2, blocks - 1))
 
            # Distance to previous
            # block numbers
            numbers[i] = f"4{numbers[i - displacement]}4"
 
        else:
 
            displacement = math.floor(math.pow(2, blocks))
 
            # Distance to previous
            # block numbers
            numbers[i] = f"5{numbers[i - displacement]}5"
 
    return numbers[N]
 
# Driver Code
N = 5
pure = getPureNumber(N)
print(pure)
 
# This code is contributed by shinjanpatra


C#




// C# program to find
// the Nth pure number
using System;
  
class PureNumbers {
  
    // Function to check if it
    // is a power of 2 or not
    public bool isPowerOfTwo(int N)
    {
        double number
            = Math.Log(N) / Math.Log(2);
        int checker = (int)number;
        return number - checker == 0;
    }
  
    // if a number belongs to 4 series
    // it should lie between 2^blocks -1 to
    // 2^blocks + 2^(blocks-1) -1
    public bool isSeriesFour(
        int N, int digits)
    {
        int upperBound
            = (int)(Math.Pow(2, digits)
                    + Math.Pow(2, digits - 1)
                    - 1);
        int lowerBound
            = (int)(Math.Pow(2, digits)
                    - 1);
        return (N >= lowerBound)
            && (N < upperBound);
    }
  
    // Method to find pure number
    public string getPureNumber(int N)
    {
        string[] numbers
            = new string[N + 1];
  
        numbers[0] = "";
  
        int blocks = 0;
        int displacement = 0;
  
        // Iterate from 1 to N
        for (int i = 1; i < N + 1; i++) {
  
            // Check if number is power of two
            if (isPowerOfTwo(i + 1)) {
                blocks = blocks + 1;
            }
  
            if (isSeriesFour(i, blocks)) {
                displacement
                    = (int)Math.Pow(
                        2, blocks - 1);
  
                // Distance to previous
                // block numbers
                numbers[i]
                    = "4"
                      + numbers[i - displacement]
                      + "4";
            }
            else {
  
                displacement
                    = (int)Math.Pow(
                        2, blocks);
  
                // Distance to previous
                // block numbers
                numbers[i]
                    = "5"
                      + numbers[i - displacement]
                      + "5";
            }
        }
  
        return numbers[N];
    }
  
    // Driver Code
    public static void Main()
    {
        int N = 5;
  
        // Create an object of the class
        PureNumbers ob = new PureNumbers();
  
        // Function call to find the
        // Nth pure number
        string pure = ob.getPureNumber(N);
  
        Console.Write(pure);
    }
}
 
// This code is contributed by chitranayal


Javascript




<script>
// Javascript program to find
// the Nth pure num
 
// Function to check if it
// is a power of 2 or not
function isPowerOfTwo(N)
{
    let number = Math.log(N)/Math.log(2);
    let checker = Math.floor(number);
    return number - checker == 0;
}
 
// if a number belongs to 4 series
// it should lie between 2^blocks -1 to
// 2^blocks + 2^(blocks-1) -1
function isSeriesFour(N, digits)
{
    let upperBound = Math.floor(Math.pow(2, digits) + Math.pow(2, digits - 1)-1);
    let lowerBound = Math.floor(Math.pow(2, digits)-1);
    return (N >= lowerBound) && (N < upperBound);
}
 
// Method to find pure number
function getPureNumber(N)
{
    let numbers = new Array(N + 1);
 
    numbers[0] = "";
 
    let blocks = 0;
    let displacement = 0;
 
    // Iterate from 1 to N
    for (let i = 1; i < N + 1; i++) {
 
        // Check if number is power of two
        if (isPowerOfTwo(i + 1)) {
            blocks = blocks + 1;
        }
 
        if (isSeriesFour(i, blocks)) {
            displacement
                = Math.floor(Math.pow(2, blocks - 1));
 
            // Distance to previous
            // block numbers
            numbers[i] = "4" + numbers[i - displacement] + "4";
        }
 
        else {
 
            displacement = Math.floor(Math.pow(2, blocks));
 
            // Distance to previous
            // block numbers
            numbers[i] = "5" + numbers[i - displacement] + "5";
        }
    }
 
    return numbers[N];
}
 
// Driver Code
 
let N = 5;
 
let pure = getPureNumber(N);
 
document.write(pure + "<br>");
 
// This code is contributed by _saurabh_jaiswal
</script>


Output: 

5445

 

Time Complexity: O(NlogN) as using pow function in a loop

Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments