Wednesday, July 3, 2024
HomeData ModellingData Structure & AlgorithmFind the node whose xor with x gives minimum value

Find the node whose xor with x gives minimum value

Given a tree, and the weights of all the nodes and an integer x, the task is to find a node i such that weight[i] xor x is minimum.
Examples: 
 

Input: 
 

x = 15 
Output:
Node 1: 5 xor 15 = 10 
Node 2: 10 xor 15 = 5 
Node 3: 11 xor 15 = 4 
Node 4: 8 xor 15 = 7 
Node 5: 6 xor 15 = 9 
 

 

Approach: Perform dfs on the tree and keep track of the node whose weighted xor with x gives the minimum value.
Below is the implementation of above approach:
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
int minimum = INT_MAX, x, ans;
 
vector<int> graph[100];
vector<int> weight(100);
 
// Function to perform dfs to find
// the minimum xored value
void dfs(int node, int parent)
{
    // If current value is less than
    // the current minimum
    if (minimum > (weight[node] ^ x)) {
        minimum = weight[node] ^ x;
        ans = node;
    }
    for (int to : graph[node]) {
        if (to == parent)
            continue;
        dfs(to, node);
    }
}
 
// Driver code
int main()
{
    x = 15;
 
    // Weights of the node
    weight[1] = 5;
    weight[2] = 10;
    weight[3] = 11;
    weight[4] = 8;
    weight[5] = 6;
 
    // Edges of the tree
    graph[1].push_back(2);
    graph[2].push_back(3);
    graph[2].push_back(4);
    graph[1].push_back(5);
 
    dfs(1, 1);
 
    cout << ans;
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
import java.lang.*;
 
class GFG
{
 
    static int minimum = Integer.MAX_VALUE, x, ans;
 
    @SuppressWarnings("unchecked")
    static Vector<Integer>[] graph = new Vector[100];
    static int[] weight = new int[100];
 
    // This block is executed even before main() function
    // This is necessary otherwise this program will
    // throw "NullPointerException"
    static
    {
        for (int i = 0; i < 100; i++)
            graph[i] = new Vector<>();
    }
 
    // Function to perform dfs to find
    // the minimum xored value
    static void dfs(int node, int parent)
    {
 
        // If current value is less than
        // the current minimum
        if (minimum > (weight[node] ^ x))
        {
            minimum = weight[node] ^ x;
            ans = node;
        }
        for (int to : graph[node])
        {
            if (to == parent)
                continue;
            dfs(to, node);
        }
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        x = 15;
 
        // Weights of the node
        weight[1] = 5;
        weight[2] = 10;
        weight[3] = 11;
        weight[4] = 8;
        weight[5] = 6;
 
        // Edges of the tree
        graph[1].add(2);
        graph[2].add(3);
        graph[2].add(4);
        graph[1].add(5);
 
        dfs(1, 1);
 
        System.out.println(ans);
    }
}
 
// This code is contributed by SHUBHAMSINGH10


C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG
{
 
static int minimum = int.MaxValue, x, ans;
 
static List<List<int>> graph = new List<List<int>>();
static List<int> weight = new List<int>();
 
 
// Function to perform dfs to find
// the minimum value
static void dfs(int node, int parent)
{
    // If current value is less than
    // the current minimum
    if (minimum > (weight[node] ^ x))
    {
        minimum = weight[node] ^ x;
        ans = node;
    }
         
    for (int i = 0; i < graph[node].Count; i++)
    {
        if (graph[node][i] == parent)
            continue;
        dfs(graph[node][i], node);
    }
}
 
// Driver code
public static void Main()
{
    x = 15;
 
    // Weights of the node
    weight.Add(0);
    weight.Add(5);
    weight.Add(10);
    weight.Add(11);;
    weight.Add(8);
    weight.Add(6);
     
    for(int i = 0; i < 100; i++)
    graph.Add(new List<int>());
 
    // Edges of the tree
    graph[1].Add(2);
    graph[2].Add(3);
    graph[2].Add(4);
    graph[1].Add(5);
 
    dfs(1, 1);
    Console.Write( ans);
}
}
 
// This code is contributed by SHUBHAMSINGH10


Python3




# Python implementation of the approach
from sys import maxsize
 
minimum, x, ans = maxsize, None, None
 
graph = [[] for i in range(100)]
weight = [0] * 100
 
# Function to perform dfs to find
# the minimum xored value
def dfs(node, parent):
    global x, ans, graph, weight, minimum
 
    # If current value is less than
    # the current minimum
    if minimum > weight[node] ^ x:
        minimum = weight[node] ^ x
        ans = node
 
    for to in graph[node]:
        if to == parent:
            continue
        dfs(to, node)
 
# Driver Code
if __name__ == "__main__":
 
    x = 15
 
    # Weights of the node
    weight[1] = 5
    weight[2] = 10
    weight[3] = 11
    weight[4] = 8
    weight[5] = 6
 
    # Edges of the tree
    graph[1].append(2)
    graph[2].append(3)
    graph[2].append(4)
    graph[1].append(5)
 
    dfs(1, 1)
 
    print(ans)
 
# This code is contributed by
# sanjeev2552


Javascript




<script>
// Javascript implementation of the approach
      
    let minimum = Number.MAX_VALUE, x, ans;
    let graph = new Array(100);
    let weight = new Array(100);
    for(let i = 0; i < 100; i++)
    {
        graph[i] = [];
        weight[i] = 0;
    }
     
    // Function to perform dfs to find
    // the minimum xored value
    function  dfs(node, parent)
    {
     
        // If current value is less than
        // the current minimum
        if (minimum > (weight[node] ^ x))
        {
            minimum = weight[node] ^ x;
            ans = node;
        }
        for (let to = 0; to < graph[node].length; to++)
        {
            if (graph[node][to] == parent)
                continue;
            dfs(graph[node][to], node);
        }
    }
     
    // Driver Code
    x = 15;
     
   // Weights of the node
    weight[1] = 5;
    weight[2] = 10;
    weight[3] = 11;
    weight[4] = 8;
    weight[5] = 6;
 
    // Edges of the tree
    graph[1].push(2);
    graph[2].push(3);
    graph[2].push(4);
    graph[1].push(5);
 
    dfs(1, 1);
    document.write(ans);
     
    // This code is contributed by unknown2108
</script>


Output: 

3

 

Time Complexity: O(N) where N is the number of nodes in the graph.  
Space Complexity: O(N) 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Shaida Kate Naidoo
am passionate about learning the latest technologies available to developers in either a Front End or Back End capacity. I enjoy creating applications that are well designed and responsive, in addition to being user friendly. I thrive in fast paced environments. With a diverse educational and work experience background, I excel at collaborating with teams both local and international. A versatile developer with interests in Software Development and Software Engineering. I consider myself to be adaptable and a self motivated learner. I am interested in new programming technologies, and continuous self improvement.
RELATED ARTICLES

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Most Popular

Recent Comments