Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIFind the next Non-Fibonacci number

Find the next Non-Fibonacci number

Given a number N, the task is to find the next Non-Fibonacci number.
Examples: 
 

Input: N = 4 
Output:
6 is the next non-fibonacci number after 4
Input: N = 6 
Output:
 

Approach: As the fibonacci series is given as 
 

0, 1, 1, 2, 3, 5, 8, 13, 21, 34…. 
 

It can be observed that there does not exists any 2 consecutive fibonacci numbers. Therefore, inorder to find the next Non-Fibonacci number, the following cases arise: 
 

  1. If N <= 3, then the next Non-Fibonacci number will be 4
  2. If N > 3, then we will check if (N + 1) is fibonacci number or not
    • If (N + 1) is a fibonacci number then (N + 2) will be the next Non-Fibonacci number. 
       
    • Else (N + 1) will be the answer

Below is the implementation of the above approach:
 

C++




// C++ implementation of the approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if a
// number is perfect square
bool isPerfectSquare(int x)
{
    int s = sqrt(x);
    return (s * s == x);
}
 
// Function to check if a
// number is Fibonacci Number
bool isFibonacci(int N)
{
    // N is Fibonacci if either
    // (5*N*N + 4), (5*N*N - 4) or both
    // is a perfect square
    return isPerfectSquare(5 * N * N + 4)
           || isPerfectSquare(5 * N * N - 4);
}
 
// Function to find
// the next Non-Fibonacci Number
int nextNonFibonacci(int N)
{
 
    // Case 1
    // If N<=3, then 4 will be
    // next Non-Fibonacci Number
    if (N <= 3)
        return 4;
 
    // Case 2
    // If N+1 is Fibonacci, then N+2
    // will be next Non-Fibonacci Number
    if (isFibonacci(N + 1))
        return N + 2;
 
    // If N+1 is Non-Fibonacci, then N+2
    // will be next Non-Fibonacci Number
    else
        return N + 1;
}
 
// Driver code
int main()
{
    int N = 3;
    cout << nextNonFibonacci(N)
         << endl;
 
    N = 5;
    cout << nextNonFibonacci(N)
         << endl;
 
    N = 7;
    cout << nextNonFibonacci(N)
         << endl;
}


C




// C implementation of the approach
 
#include <stdio.h>
#include<stdbool.h>
#include<math.h>
 
 
// Function to check if a
// number is perfect square
bool isPerfectSquare(int x)
{
    int s = sqrt(x);
    return (s * s == x);
}
 
// Function to check if a
// number is Fibonacci Number
bool isFibonacci(int N)
{
    // N is Fibonacci if either
    // (5*N*N + 4), (5*N*N - 4) or both
    // is a perfect square
    return isPerfectSquare(5 * N * N + 4)
        || isPerfectSquare(5 * N * N - 4);
}
 
// Function to find
// the next Non-Fibonacci Number
int nextNonFibonacci(int N)
{
 
    // Case 1
    // If N<=3, then 4 will be
    // next Non-Fibonacci Number
    if (N <= 3)
        return 4;
 
    // Case 2
    // If N+1 is Fibonacci, then N+2
    // will be next Non-Fibonacci Number
    if (isFibonacci(N + 1))
        return N + 2;
 
    // If N+1 is Non-Fibonacci, then N+2
    // will be next Non-Fibonacci Number
    else
        return N + 1;
}
 
// Driver code
int main()
{
    int N = 3;
    printf("%d\n",nextNonFibonacci(N));
 
    N = 5;
    printf("%d\n",nextNonFibonacci(N));
 
    N = 7;
    printf("%d",nextNonFibonacci(N));
     
}
 
// This code is contributed by allwink45.


Java




// Java implementation of the approach
import java.util.*;
 
class GFG{
  
// Function to check if a
// number is perfect square
static boolean isPerfectSquare(int x)
{
    int s = (int) Math.sqrt(x);
    return (s * s == x);
}
  
// Function to check if a
// number is Fibonacci Number
static boolean isFibonacci(int N)
{
    // N is Fibonacci if either
    // (5*N*N + 4), (5*N*N - 4) or both
    // is a perfect square
    return isPerfectSquare(5 * N * N + 4)
           || isPerfectSquare(5 * N * N - 4);
}
  
// Function to find
// the next Non-Fibonacci Number
static int nextNonFibonacci(int N)
{
  
    // Case 1
    // If N<=3, then 4 will be
    // next Non-Fibonacci Number
    if (N <= 3)
        return 4;
  
    // Case 2
    // If N+1 is Fibonacci, then N+2
    // will be next Non-Fibonacci Number
    if (isFibonacci(N + 1))
        return N + 2;
  
    // If N+1 is Non-Fibonacci, then N+2
    // will be next Non-Fibonacci Number
    else
        return N + 1;
}
  
// Driver code
public static void main(String[] args)
{
    int N = 3;
    System.out.print(nextNonFibonacci(N)
         +"\n");
  
    N = 5;
    System.out.print(nextNonFibonacci(N)
         +"\n");
  
    N = 7;
    System.out.print(nextNonFibonacci(N)
         +"\n");
}
}
 
// This code is contributed by 29AjayKumar


Python 3




# Python 3 implementation of the approach
from math import sqrt
 
# Function to check if a
# number is perfect square
def isPerfectSquare(x):
    s = sqrt(x)
    return (s * s == x)
 
# Function to check if a
# number is Fibonacci Number
def isFibonacci(N):
 
    # N is Fibonacci if either
    # (5*N*N + 4), (5*N*N - 4) or both
    # is a perfect square
    return isPerfectSquare(5 * N * N + 4) or \
            isPerfectSquare(5 * N * N - 4)
 
# Function to find
# the next Non-Fibonacci Number
def nextNonFibonacci(N):
     
    # Case 1
    # If N<=3, then 4 will be
    # next Non-Fibonacci Number
    if (N <= 3):
        return 4
 
    # Case 2
    # If N+1 is Fibonacci, then N+2
    # will be next Non-Fibonacci Number
    if (isFibonacci(N + 1)):
        return N + 2
 
    # If N+1 is Non-Fibonacci, then N+2
    # will be next Non-Fibonacci Number
    else:
        return N
 
# Driver code
if __name__ == '__main__':
    N = 3
    print(nextNonFibonacci(N))
    N = 4
    print(nextNonFibonacci(N))
 
    N = 7
    print(nextNonFibonacci(N))
     
# This code is contributed by Surendra_Gangwar


C#




// C# implementation of the approach
using System;
 
class GFG{
   
// Function to check if a
// number is perfect square
static bool isPerfectSquare(int x)
{
    int s = (int) Math.Sqrt(x);
    return (s * s == x);
}
   
// Function to check if a
// number is Fibonacci Number
static bool isFibonacci(int N)
{
    // N is Fibonacci if either
    // (5*N*N + 4), (5*N*N - 4) or both
    // is a perfect square
    return isPerfectSquare(5 * N * N + 4)
           || isPerfectSquare(5 * N * N - 4);
}
   
// Function to find
// the next Non-Fibonacci Number
static int nextNonFibonacci(int N)
{
   
    // Case 1
    // If N<=3, then 4 will be
    // next Non-Fibonacci Number
    if (N <= 3)
        return 4;
   
    // Case 2
    // If N+1 is Fibonacci, then N+2
    // will be next Non-Fibonacci Number
    if (isFibonacci(N + 1))
        return N + 2;
   
    // If N+1 is Non-Fibonacci, then N+2
    // will be next Non-Fibonacci Number
    else
        return N + 1;
}
   
// Driver code
public static void Main(String[] args)
{
    int N = 3;
    Console.Write(nextNonFibonacci(N)
         +"\n");
   
    N = 5;
    Console.Write(nextNonFibonacci(N)
         +"\n");
   
    N = 7;
    Console.Write(nextNonFibonacci(N)
         +"\n");
}
}
 
// This code is contributed by Princi Singh


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to check if a
// number is perfect square
function isPerfectSquare(x)
{
    var s = parseInt(Math.sqrt(x));
    return (s * s == x);
}
 
// Function to check if a
// number is Fibonacci Number
function isFibonacci(N)
{
    // N is Fibonacci if either
    // (5*N*N + 4), (5*N*N - 4) or both
    // is a perfect square
    return isPerfectSquare(5 * N * N + 4)
           || isPerfectSquare(5 * N * N - 4);
}
 
// Function to find
// the next Non-Fibonacci Number
function nextNonFibonacci(N)
{
 
    // Case 1
    // If N<=3, then 4 will be
    // next Non-Fibonacci Number
    if (N <= 3)
        return 4;
 
    // Case 2
    // If N+1 is Fibonacci, then N+2
    // will be next Non-Fibonacci Number
    if (isFibonacci(N + 1))
        return N + 2;
 
    // If N+1 is Non-Fibonacci, then N+2
    // will be next Non-Fibonacci Number
    else
        return N + 1;
}
 
// Driver code
var N = 3;
document.write(nextNonFibonacci(N)+"<br>");
N = 5;
document.write(nextNonFibonacci(N)+"<br>");
N = 7;
document.write(nextNonFibonacci(N)+"<br>");
 
// This code is contributed by rutvik_56.
</script>


Output: 

4
6
9

 

Time Complexity: O(n1/2)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments