Friday, January 10, 2025
Google search engine
HomeData Modelling & AIFind the nearest value present on the left of every array element

Find the nearest value present on the left of every array element

Given an array arr[] of size N, the task is for each array element is to find the nearest non-equal value present on its left in the array. If no such element is found, then print -1

Examples:

Input: arr[] = { 2, 1, 5, 8, 3 }
Output: -1 2 2 5 2
Explanation:
[2], it is the only number in this prefix. Hence, answer is -1. 
[2, 1], the closest number to 1 is 2
[2, 1, 5], the closest number to 5 is 2
[2, 1, 5, 8], the closest number to 8 is 5 
[2, 1, 5, 8, 3], the closest number to 3 is 2

Input: arr[] = {3, 3, 2, 4, 6, 5, 5, 1}
Output: -1 -1 3 3 4 4 4 2
Explanation:
[3], it is the only number in this prefix. Hence, answer is -1. 
[3, 3], it is the only number in this prefix. Hence, answer is -1
[3, 3, 2], the closest number to 2 is 3
[3, 3, 2, 4], the closest number to 4 is 3 
[3, 3, 2, 4, 6], the closest number to 6 is 4
[3, 3, 2, 4, 6, 5], the closest number to 5 is 4
[3, 3, 2, 4, 6, 5, 5], the closest number to 5 is 4
[3, 3, 2, 4, 6, 5, 5, 1], the closest number to 1 is 2

Naive Approach: The simplest idea is to traverse the given array and for every ith element, find the closest element on the left side of index i which is not equal to arr[i]
Time Complexity: O(N^2)
Auxiliary Space: O(1)

Efficient Approach: 

The idea is to insert the elements of the given array in a Set such that the inserted numbers are sorted and then for an integer, find its position and compare its next value with the previous value, and print the closer value out of the two.
Follow the steps below to solve the problem:

  • Initialize a Set of integers S to store the elements in sorted order.
  • Traverse the array arr[] using the variable i.
  • Now, find the nearest value smaller as well as greater than arr[i], say X and Y respectively.
    • If X cannot be found, print Y.
    • If Y cannot be found, print Z.
    • If both X and Y cannot be found, print “-1”.
  • After that, add arr[i] to the Set S and print X if abs(X – arr[i]) is smaller than abs(Y – arr[i]). Otherwise, print Y.
  • Repeat the above steps for every element.

Below is the implementation of the above approach:  

C++14




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the closest number on
// the left side of x
void printClosest(set<int>& streamNumbers, int x)
{
 
    // Insert the value in set and store
    // its position
    auto it = streamNumbers.insert(x).first;
 
    // If x is the smallest element in set
    if (it == streamNumbers.begin())
    {
        // If count of elements in the set
        // equal to 1
        if (next(it) == streamNumbers.end())
        {
 
            cout << "-1 ";
            return;
        }
 
        // Otherwise, print its
        // immediate greater element
        int rightVal = *next(it);
        cout << rightVal << " ";
        return;
    }
 
    // Store its immediate smaller element
    int leftVal = *prev(it);
 
    // If immediate greater element does not
    // exists print it's immediate
    // smaller element
    if (next(it) == streamNumbers.end()) {
        cout << leftVal << " ";
        return;
    }
 
    // Store the immediate
    // greater element
    int rightVal = *next(it);
 
    // Print the closest number
    if (x - leftVal <= rightVal - x)
        cout << leftVal << " ";
    else
        cout << rightVal << " ";
}
 
// Driver Code
int main()
{
 
    // Given array
    vector<int> arr = { 3, 3, 2, 4, 6, 5, 5, 1 };
 
    // Initialize set
    set<int> streamNumbers;
 
    // Print Answer
    for (int i = 0; i < arr.size(); i++) {
 
        // Function Call
        printClosest(streamNumbers, arr[i]);
    }
 
    return 0;
}


Java




import java.util.*;
 
class Main {
  // Function to find the closest number on
  // the left side of x
  static void printClosest(SortedSet<Integer> streamNumbers, int x) {
 
    streamNumbers.add(x);
    int rightVal, leftVal;
    // Insert the value in set and store
    // its position
    List<Integer> it = new ArrayList<>(streamNumbers);
    it.sort(null);
 
    int i = it.indexOf(x);
 
    // If x is the smallest element in set
    if (it.get(i) == it.get(0)) {
      // If count of elements in the set
      // equal to 1
      if (it.size() == 1) {
 
        System.out.print("-1 ");
        return;
      }
 
      // Otherwise, print its
      // immediate greater element
      rightVal = it.get(i + 1);
      System.out.print(rightVal + " ");
      return;
    }
 
    // Store its immediate smaller element
    leftVal = it.get(i - 1);
 
    // If immediate greater element does not
    // exists print it's immediate
    // smaller element
    if (i + 1 == it.size()) {
      System.out.print(leftVal + " ");
      return;
    }
 
    // Store the immediate
    // greater element
    rightVal = it.get(i + 1);
 
    // Print the closest number
    if (x - leftVal <= rightVal - x)
      System.out.print(leftVal + " ");
    else
      System.out.print(rightVal + " ");
  }
 
  // Driver Code
  public static void main(String[] args) {
    // Given array
    int[] arr = {3, 3, 2, 4, 6, 5, 5, 1};
 
    // Initialize set
    SortedSet<Integer> streamNumbers = new TreeSet<>();
 
    // Print Answer
    for (int i = 0; i < arr.length; i++) {
      // Function Call
      printClosest(streamNumbers, arr[i]);
    }
  }
}


Python3




# Python3 program for the above approach
 
# Function to find the closest number on
# the left side of x
def printClosest(streamNumbers, x):
    streamNumbers.add(x);
     
    # Insert the value in set and store
    # its position
    it =sorted(streamNumbers)
    
    i = it.index(x);
     
    # If x is the smallest element in set
    if (it[i] == it[0]):
     
        # If count of elements in the set
        # equal to 1
        if ( len(it) == 1):
 
            print("-1", end = " ");
            return;
         
        # Otherwise, print its
        # immediate greater element
        rightVal = it[i + 1]
        print(rightVal, end = " ");
        return;
     
    # Store its immediate smaller element
    leftVal = it[i - 1]
 
    # If immediate greater element does not
    # exists print it's immediate
    # smaller element
    if (i + 1 == len(it) ):
        print(leftVal, end = " ");
        return;
     
    # Store the immediate
    # greater element
    rightVal = it[i + 1];
 
    # Print the closest number
    if (x - leftVal <= rightVal - x):
        print(leftVal, end = " ");
    else:
        print(rightVal, end = " ");
 
# Driver Code
 
# Given array
arr = [ 3, 3, 2, 4, 6, 5, 5, 1 ];
 
# Initialize set
streamNumbers = set()
 
# Print Answer
for i in range(len(arr)):
    # Function Call
    printClosest(streamNumbers, arr[i]);
 
# This code is contributed by phasing17.


C#




// C# program for the above approach
using System;
using System.Linq;
using System.Collections.Generic;
 
class GFG
{
  // Function to find the closest number on
  // the left side of x
  static void printClosest(SortedSet<int> streamNumbers, int x)
  {
 
    streamNumbers.Add(x);
    int rightVal, leftVal;
    // Insert the value in set and store
    // its position
    var it = streamNumbers.ToList();
    it.Sort();
 
    var i = it.IndexOf(x);
 
    // If x is the smallest element in set
    if (it[i] == it[0])
    {
      // If count of elements in the set
      // equal to 1
      if ( it.Count == 1)
      {
 
        Console.Write("-1 ");
        return;
      }
 
      // Otherwise, print its
      // immediate greater element
      rightVal = it[i + 1];
      Console.Write(rightVal + " ");
      return;
    }
 
    // Store its immediate smaller element
    leftVal = it[i - 1];
 
    // If immediate greater element does not
    // exists print it's immediate
    // smaller element
    if (i + 1 == it.Count ) {
      Console.Write(leftVal + " ");
      return;
    }
 
    // Store the immediate
    // greater element
    rightVal = it[i + 1];
 
    // Print the closest number
    if (x - leftVal <= rightVal - x)
      Console.Write(leftVal + " ");
    else
      Console.Write(rightVal + " ");
  }
 
  // Driver Code
  public static void Main(string[] args)
  {
    // Given array
    int[] arr = { 3, 3, 2, 4, 6, 5, 5, 1 };
 
    // Initialize set
    var streamNumbers = new SortedSet<int>();
 
    // Print Answer
    for (var i = 0; i < arr.Length; i++)
    {
       
      // Function Call
      printClosest(streamNumbers, arr[i]);
    }
  }
}
 
// This code is contributed by phasing17.


Javascript




// JS program for the above approach
 
// Function to find the closest number on
// the left side of x
function printClosest(streamNumbers, x)
{
     
    streamNumbers.add(x);
     
    // Insert the value in set and store
    // its position
    let it = Array.from(streamNumbers)
    
    it.sort(function(a, b) {return a - b})
    let i = it.indexOf(x);
     
    // If x is the smallest element in set
    if (it[i] == it[0])
    {
        // If count of elements in the set
        // equal to 1
        if ( it.length == 1)
        {
 
            process.stdout.write("-1 ");
            return;
        }
 
        // Otherwise, print its
        // immediate greater element
        let rightVal = it[i + 1]
        process.stdout.write(rightVal + " ");
        return;
    }
 
    // Store its immediate smaller element
    let leftVal = it[i - 1]
 
    // If immediate greater element does not
    // exists print it's immediate
    // smaller element
    if (i + 1 == it.length ) {
        process.stdout.write(leftVal + " ");
        return;
    }
 
    // Store the immediate
    // greater element
    let rightVal = it[i + 1];
 
    // Print the closest number
    if (x - leftVal <= rightVal - x)
        process.stdout.write(leftVal + " ");
    else
        process.stdout.write(rightVal + " ");
}
 
// Driver Code
 
// Given array
let arr = [ 3, 3, 2, 4, 6, 5, 5, 1 ];
 
// Initialize set
let streamNumbers = new Set();
 
// Print Answer
for (var i = 0; i < arr.length; i++) {
    // Function Call
    printClosest(streamNumbers, arr[i]);
}
 
// This code is contributed by phasing17.


Output

-1 -1 3 3 4 4 4 2 

Time Complexity: O(N * log(N))
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments