Given an array arr[ ] of size N, the task for each array element is to print the nearest perfect square having same parity.
Examples:
Input: arr[ ] = {6, 3, 2, 15}
Output: 4 1 4 9
Explanation:
The nearest even perfect square of arr[0] (= 6) is 4.
The nearest odd perfect square of arr[1] (= 3) is 1.
The nearest even perfect square of arr[2] (= 2) is 4
The nearest odd perfect square of arr[3] (= 15) is 9.Input: arr[ ] = {31, 18, 64}
Output: 25 16 64
Approach: Follow the steps below to solve the problem:
- Traverse the array and perform the following operations:
- Find the square root of the current array element and store it in a variable, say sr.
- If sr is of same parity as arr[i], then sr*sr is the nearest perfect square.
- Otherwise, (sr + 1)2 is the nearest perfect square.
- Print the nearest perfect square obtained in the above step.
Below is the implementation of the above approach:
C++
// C++ program to implement // the above approach #include <bits/stdc++.h> using namespace std; // Function to find the nearest even and odd // perfect squares for even and odd array elements void nearestPerfectSquare( int arr[], int N) { // Traverse the array for ( int i = 0; i < N; i++) { // Calculate square root of // current array element int sr = sqrt (arr[i]); // If both are of same parity if ((sr & 1) == (arr[i] & 1)) cout << sr * sr << " " ; // Otherwise else { sr++; cout << sr * sr << " " ; } } } // Driver Code int main() { int arr[] = { 6, 3, 2, 15 }; int N = sizeof (arr) / sizeof (arr[0]); nearestPerfectSquare(arr, N); return 0; } |
Java
// Java program to implement // the above approach import java.util.*; class GFG { // Function to find the nearest even and odd // perfect squares for even and odd array elements static void nearestPerfectSquare( int arr[], int N) { // Traverse the array for ( int i = 0 ; i < N; i++) { // Calculate square root of // current array element int sr = ( int )Math.sqrt(arr[i]); // If both are of same parity if ((sr & 1 ) == (arr[i] & 1 )) System.out.print((sr * sr) + " " ); // Otherwise else { sr++; System.out.print((sr * sr) + " " ); } } } // Driver Code public static void main(String[] args) { int arr[] = { 6 , 3 , 2 , 15 }; int N = arr.length; nearestPerfectSquare(arr, N); } } // This code is contributed by souravghosh0416. |
Python3
# Python3 program for the above approach import math # Function to find the nearest even and odd # perfect squares for even and odd array elements def nearestPerfectSquare(arr, N) : # Traverse the array for i in range (N): # Calculate square root of # current array element sr = int (math.sqrt(arr[i])) # If both are of same parity if ((sr & 1 ) = = (arr[i] & 1 )) : print (sr * sr, end = " " ) # Otherwise else : sr + = 1 print (sr * sr, end = " " ) # Driver Code arr = [ 6 , 3 , 2 , 15 ] N = len (arr) nearestPerfectSquare(arr, N) # This code is contributed by sanjoy_62. |
C#
// C# program for the above approach using System; class GFG{ // Function to find the nearest even and odd // perfect squares for even and odd array elements static void nearestPerfectSquare( int [] arr, int N) { // Traverse the array for ( int i = 0; i < N; i++) { // Calculate square root of // current array element int sr = ( int )Math.Sqrt(arr[i]); // If both are of same parity if ((sr & 1) == (arr[i] & 1)) Console.Write((sr * sr) + " " ); // Otherwise else { sr++; Console.Write((sr * sr) + " " ); } } } // Driver Code static public void Main() { int [] arr = { 6, 3, 2, 15 }; int N = arr.Length; nearestPerfectSquare(arr, N); } } // This code is contributed by splevel62. |
Javascript
<script> // Javascript program to implement // the above approach // Function to find the nearest even and odd // perfect squares for even and odd array elements function nearestPerfectSquare(arr, N) { // Traverse the array for (let i = 0; i < N; i++) { // Calculate square root of // current array element let sr = Math.floor(Math.sqrt(arr[i])); // If both are of same parity if ((sr & 1) == (arr[i] & 1)) document.write((sr * sr) + " " ); // Otherwise else { sr++; document.write((sr * sr) + " " ); } } } // Driver code // Given array let arr = [ 6, 3, 2, 15 ]; let N = arr.length; nearestPerfectSquare(arr, N); // This code is contributed by target_2 </script> |
4 1 4 9
Time Complexity: O(N*logN) where N is size of given array
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!