Thursday, January 16, 2025
Google search engine
HomeData Modelling & AIFind the most valued alphabet in the String

Find the most valued alphabet in the String

Given a string str, the task is to find the maximum valued alphabet in str. The value of a particular alphabet is defined as the difference in the indices of its last and the first occurrence. If there are multiple such alphabets then find the lexicographically smallest alphabet.

Examples: 

Input: str = “abbba” 
Output:
value(‘a’) = 4 – 0 = 4 
value(‘b’) = 3 – 1 = 2

Input: str = “bbb” 
Output:

Approach: The idea is to store the first and the last occurrences of each of the alphabets in two auxiliary arrays say first[] and last[]. Now, these two arrays can be used to find the maximum valued alphabet in the given string.

Below is the implementation of the above approach:

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
const int MAX = 26;
 
// Function to return the maximum
// valued alphabet
char maxAlpha(string str, int len)
{
 
    // To store the first and the last
    // occurrence of all the characters
    int first[MAX], last[MAX];
 
    // Set the first and the last occurrence
    // of all the characters to -1
    for (int i = 0; i < MAX; i++) {
        first[i] = -1;
        last[i] = -1;
    }
 
    // Update the occurrences of the characters
    for (int i = 0; i < len; i++) {
 
        int index = (str[i] - 'a');
 
        // Only set the first occurrence if
        // it hasn't already been set
        if (first[index] == -1)
            first[index] = i;
 
        last[index] = i;
    }
 
    // To store the result
    int ans = -1, maxVal = -1;
 
    // For every alphabet
    for (int i = 0; i < MAX; i++) {
 
        // If current alphabet doesn't appear
        // in the given string
        if (first[i] == -1)
            continue;
 
        // If the current character has
        // the highest value so far
        if ((last[i] - first[i]) > maxVal) {
            maxVal = last[i] - first[i];
            ans = i;
        }
    }
 
    return (char)(ans + 'a');
}
 
// Driver code
int main()
{
    string str = "abbba";
    int len = str.length();
 
    cout << maxAlpha(str, len);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
 
static int MAX = 26;
 
// Function to return the maximum
// valued alphabet
static char maxAlpha(String str, int len)
{
 
    // To store the first and the last
    // occurrence of all the characters
    int []first = new int[MAX];
    int []last = new int[MAX];
 
    // Set the first and the last occurrence
    // of all the characters to -1
    for (int i = 0; i < MAX; i++)
    {
        first[i] = -1;
        last[i] = -1;
    }
 
    // Update the occurrences of the characters
    for (int i = 0; i < len; i++)
    {
 
        int index = (str.charAt(i) - 'a');
 
        // Only set the first occurrence if
        // it hasn't already been set
        if (first[index] == -1)
            first[index] = i;
 
        last[index] = i;
    }
 
    // To store the result
    int ans = -1, maxVal = -1;
 
    // For every alphabet
    for (int i = 0; i < MAX; i++)
    {
 
        // If current alphabet doesn't appear
        // in the given String
        if (first[i] == -1)
            continue;
 
        // If the current character has
        // the highest value so far
        if ((last[i] - first[i]) > maxVal)
        {
            maxVal = last[i] - first[i];
            ans = i;
        }
    }
    return (char)(ans + 'a');
}
 
// Driver code
public static void main(String[] args)
{
    String str = "abbba";
    int len = str.length();
 
    System.out.print(maxAlpha(str, len));
}
}
 
// This code is contributed by 29AjayKumar


Python




# Python implementation of the approach
MAX = 26
 
# Function to return the maximum
# valued alphabet
def maxAlpha(str, len):
 
    # To store the first and the last
    # occurrence of all the characters
 
    # Set the first and the last occurrence
    # of all the characters to -1
     
    first = [-1 for x in range(MAX)]
    last = [-1 for x in range(MAX)]
     
    # Update the occurrences of the characters
    for i in range(0,len):
 
        index = ord(str[i])-97
 
        # Only set the first occurrence if
        # it hasn't already been set
        if (first[index] == -1):
            first[index] = i
 
        last[index] = i
     
    # To store the result
    ans = -1
    maxVal = -1
 
    # For every alphabet
    for i in range(0,MAX):
 
        # If current alphabet doesn't appear
        # in the given string
        if (first[i] == -1):
            continue
 
        # If the current character has
        # the highest value so far
        if ((last[i] - first[i]) > maxVal):
            maxVal = last[i] - first[i];
            ans = i
 
    return chr(ans + 97)
 
# Driver code
str = "abbba"
len = len(str)
 
print(maxAlpha(str, len))
 
# This code is contributed by Sanjit_Prasad


C#




// C# implementation of the approach
using System;
 
class GFG
{
static int MAX = 26;
 
// Function to return the maximum
// valued alphabet
static char maxAlpha(String str, int len)
{
 
    // To store the first and the last
    // occurrence of all the characters
    int []first = new int[MAX];
    int []last = new int[MAX];
 
    // Set the first and the last occurrence
    // of all the characters to -1
    for (int i = 0; i < MAX; i++)
    {
        first[i] = -1;
        last[i] = -1;
    }
 
    // Update the occurrences of the characters
    for (int i = 0; i < len; i++)
    {
 
        int index = (str[i] - 'a');
 
        // Only set the first occurrence if
        // it hasn't already been set
        if (first[index] == -1)
            first[index] = i;
 
        last[index] = i;
    }
 
    // To store the result
    int ans = -1, maxVal = -1;
 
    // For every alphabet
    for (int i = 0; i < MAX; i++)
    {
 
        // If current alphabet doesn't appear
        // in the given String
        if (first[i] == -1)
            continue;
 
        // If the current character has
        // the highest value so far
        if ((last[i] - first[i]) > maxVal)
        {
            maxVal = last[i] - first[i];
            ans = i;
        }
    }
    return (char)(ans + 'a');
}
 
// Driver code
public static void Main(String[] args)
{
    String str = "abbba";
    int len = str.Length;
 
    Console.Write(maxAlpha(str, len));
}
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
 
      // JavaScript implementation of the approach
      const MAX = 26;
 
      // Function to return the maximum
      // valued alphabet
      function maxAlpha(str, len)
      {
        // To store the first and the last
        // occurrence of all the characters
        var first = new Array(MAX);
        var last = new Array(MAX);
 
        // Set the first and the last occurrence
        // of all the characters to -1
        for (var i = 0; i < MAX; i++) {
          first[i] = -1;
          last[i] = -1;
        }
 
        // Update the occurrences of the characters
        for (var i = 0; i < len; i++) {
          var index = str[i].charCodeAt(0) -
          "a".charCodeAt(0);
 
          // Only set the first occurrence if
          // it hasn't already been set
          if (first[index] === -1) first[index] = i;
 
          last[index] = i;
        }
 
        // To store the result
        var ans = -1,
          maxVal = -1;
 
        // For every alphabet
        for (var i = 0; i < MAX; i++) {
          // If current alphabet doesn't appear
          // in the given String
          if (first[i] === -1) continue;
 
          // If the current character has
          // the highest value so far
          if (last[i] - first[i] > maxVal) {
            maxVal = last[i] - first[i];
            ans = i;
          }
        }
        return String.fromCharCode(ans + "a".charCodeAt(0));
      }
 
      // Driver code
      var str = "abbba";
      var len = str.length;
 
      document.write(maxAlpha(str, len));
       
</script>


Output: 

a

 

Time Complexity: O(N)
Auxiliary Space: O(1), no extra space is required, so it is a constant.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments