Wednesday, January 8, 2025
Google search engine
HomeData Modelling & AIFind the missing number in range represented as Matrix of size...

Find the missing number in range [1, N*M+1] represented as Matrix of size N*M

Given an N x M matrix mat[][] where all elements are natural numbers starting from 1 and are continuous except 1 element, find that element.

Examples:

Input: mat[][] = {{1, 2, 3, 4}, 
                           {5, 6, 7, 8}, 
                           {9, 11, 12, 13}}
N = 3, M = 4
Output: 10
Explanation: Missing number is 10 at row no 3.

Input: mat[][] = {{1, 2, 3}, 
                           {5, 6, 7}, 
                           {8, 9, 10}} 
N = 3, M = 3
Output: 4

 

Naive Approach:

The naive approach to solve the problem is to push entire matrix elements to vector and sort the vector in ascending order. Now loop from 1 to M*N and check if it exists in the vector or not. Use binary search to find out their existence. If an integer does not exist, then that that is the answer.

Algorithm:

     1. Create a function to find the missing element in matrix, that takes matrix (2D array) and its dimensions (N and M) as input.

     2. Create a vector v to store all elements of matrix.

     3. Traverse the matrix in row-major order and push each element to vector v.

     4. Sort the vector v in ascending order.

     5. Loop through all elements from 1 to N*M:
           a. Find the position of current element i in the vector v using binary search.
           b. If the position of i is equal to the size of vector v or the element at that position is not i:
                i. Then i is the missing element, so return i.

Below is the implementation of the approach:

C++




// C++ code for the approach
 
#include <bits/stdc++.h>
using namespace std;
 
#define Max 1000
 
// function to find the missing element in matrix
int findMissing(int mat[][Max], int N, int M) {
      // create a vector to store matrix elements
    vector<int> v;
   
    for(int i=0; i<N; i++) {
        for(int j=0; j<M; j++) {
              // push element to vector
            v.push_back(mat[i][j]);
        }
    }
   
      // sort the vector in ascending order
    sort(v.begin(), v.end());
   
       // loop through all elements from 1 to N*M
    for(int i=1; i<=N*M; i++) {
       
          // find the position of i in vector using binary search
        int pos = lower_bound(v.begin(), v.end(), i) - v.begin();
         
          // check if i does not exist in vector
          if(pos == v.size() || v[pos] != i) {
          // return the missing element 
          return i;
        }
    }
}
 
// Driver's code
int main() {
    int N = 3;
    int M = 4;
 
    int Mat[][Max] = { { 1, 2, 3, 4 },
                       { 5, 6, 7, 8 },
                       {  9, 11, 12, 13 } };
 
      // Function call
    int missing = findMissing(Mat, N, M);
     
      // print the missing element
      cout << missing << endl;
   
    return 0;
}


Java




import java.util.Arrays;
import java.util.Vector;
 
class MissingElementInMatrix {
    static final int Max = 1000;
 
    // Function to find the missing element in the matrix
    static int findMissing(int[][] mat, int N, int M) {
        // Create a vector to store matrix elements
        Vector<Integer> v = new Vector<Integer>();
 
        for (int i = 0; i < N; i++) {
            for (int j = 0; j < M; j++) {
                // Push the element to the vector
                v.add(mat[i][j]);
            }
        }
 
        // Sort the vector in ascending order
        Arrays.sort(v.toArray());
 
        // Loop through all elements from 1 to N*M
        for (int i = 1; i <= N * M; i++) {
            // Find the position of i in the vector using binary search
            int pos = Arrays.binarySearch(v.toArray(), i);
 
            // Check if i does not exist in the vector
            if (pos < 0) {
                // Return the missing element
                return i;
            }
        }
 
        return -1; // No missing element found
    }
 
    // Driver's code
    public static void main(String[] args) {
        int N = 3;
        int M = 4;
 
        int[][] Mat = { { 1, 2, 3, 4 },
                        { 5, 6, 7, 8 },
                        { 9, 11, 12, 13 } };
 
        // Function call
        int missing = findMissing(Mat, N, M);
 
        // Print the missing element
        System.out.println(missing);
    }
}


Python3




def find_missing(matrix, N, M):
    # Create a list to store matrix elements
    v = []
 
    for i in range(N):
        for j in range(M):
            # Append element to the list
            v.append(matrix[i][j])
 
    # Sort the list in ascending order
    v.sort()
 
    # Loop through all elements from 1 to N*M
    for i in range(1, N*M + 1):
        # Find the position of i in the list using binary search
        pos = v.index(i) if i in v else len(v)
         
        # Check if i does not exist in the list
        if pos == len(v) or v[pos] != i:
            # Return the missing element
            return i
 
# Driver's code
if __name__ == "__main__":
    N = 3
    M = 4
 
    Mat = [[1, 2, 3, 4],
           [5, 6, 7, 8],
           [9, 11, 12, 13]]
 
    # Function call
    missing = find_missing(Mat, N, M)
 
    # Print the missing element
    print(missing)


C#




using System;
using System.Collections.Generic;
 
namespace Geek
{
    class GFG
    {
        // function to find the
       // missing element in matrix
        static int FindMissing(int[][] mat, int N, int M)
        {
            // create a list to store matrix elements
            List<int> v = new List<int>();
            for (int i = 0; i < N; i++)
            {
                for (int j = 0; j < M; j++)
                {
                    // push element to list
                    v.Add(mat[i][j]);
                }
            }
            // sort the list in ascending order
            v.Sort();
            // loop through all elements from 1 to N*M
            for (int i = 1; i <= N * M; i++)
            {
                // find the position of i in
                // list using binary search
                int pos = v.BinarySearch(i);
                // check if i does not exist in list
                if (pos < 0)
                {
                    // return the missing element
                    return i;
                }
            }
            // If no missing element is found
            // return -1 or any appropriate value
            return -1;
        }
        // Driver's code
        static void Main(string[] args)
        {
            int N = 3;
            int M = 4;
            int[][] Mat = new int[][] {
                new int[] { 1, 2, 3, 4 },
                new int[] { 5, 6, 7, 8 },
                new int[] { 9, 11, 12, 13 }
            };
            // Function call
            int missing = FindMissing(Mat, N, M);
            // print the missing element
            Console.WriteLine(missing);
            // Pause console before exit (optional)
            Console.ReadLine();
        }
    }
}


Javascript




// Function to find the missing element in a matrix
function findMissing(mat, N, M) {
    // Create an array to store matrix elements
    const arr = [];
 
    // Traverse the matrix and push elements to the array
    for (let i = 0; i < N; i++) {
        for (let j = 0; j < M; j++) {
            arr.push(mat[i][j]);
        }
    }
 
    // Sort the array in ascending order
    arr.sort((a, b) => a - b);
 
    // Loop through all elements from 1 to N*M
    for (let i = 1; i <= N * M; i++) {
        // Find the position of i in the array using binary search
        const pos = arr.findIndex((element) => element >= i);
 
        // Check if i does not exist in the array
        if (pos === -1 || arr[pos] !== i) {
            // Return the missing element
            return i;
        }
    }
}
 
// Driver code
function main() {
    const N = 3;
    const M = 4;
 
    const Mat = [
        [1, 2, 3, 4],
        [5, 6, 7, 8],
        [9, 11, 12, 13]
    ];
 
    // Function call
    const missing = findMissing(Mat, N, M);
 
    // Print the missing element
    console.log(missing);
}
 
main();


Output

10





Time Complexity: O( (N*M)*log(N*M) ) because sort function has been called. Also searching each element from 1 to N*M using lower_bound takes  O( (N*M)*log(N*M) ) time. So overall complexity is  O( (N*M)*log(N*M) ). Here, N and M are rows and columns respectively.

Space Complexity:  O( (N*M) ) as vector v has been created which takes O( (N*M) ) space. Here, N and M are rows and columns respectively.

Approach:  The problem can be solved by checking multiples of M at the last element of each row of the matrix, if it does not match then the missing element is in that row. Apply linear search and find it.

Below is the implementation of the above approach: 

C++




// C++ program for the above approach
#include <iostream>
using namespace std;
#define Max 1000
 
// Function to return Missing
// Element from matrix Mat
int check(int Mat[][Max], int N, int M)
{
    // Edge Case
    if (Mat[0][0] != 1)
        return 1;
 
    // Initialize last element of
    // first row
    int X = Mat[0][0] + M - 1;
 
    for (int i = 0; i < N; i++) {
 
        // If last element of respective row
        // matches respective multiples of X
        if (Mat[i][M - 1] == X)
            X = X + M;
 
        // Else missing element
        // is in that row
        else {
 
            // Initializing first element
            //  of the row
            int Y = X - M + 1;
 
            // Initializing column index
            int j = 0;
 
            // Linear Search
            while (Y <= X) {
                if (Mat[i][j] == Y) {
                    Y++;
                    j++;
                }
                else
                    return Y;
            }
        }
    }
}
 
// Driver Code
int main()
{
    int N = 3;
    int M = 4;
 
    int Mat[][Max] = { { 1, 2, 3, 4 },
                       { 5, 6, 7, 8 },
                       {  9, 11, 12, 13 } };
 
    cout << check(Mat, N, M);
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG{
 
// Function to return Missing
// Element from matrix Mat
static int check(int Mat[][], int N, int M)
{
    // Edge Case
    if (Mat[0][0] != 1)
        return 1;
 
    // Initialize last element of
    // first row
    int X = Mat[0][0] + M - 1;
 
    for (int i = 0; i < N; i++) {
 
        // If last element of respective row
        // matches respective multiples of X
        if (Mat[i][M - 1] == X)
            X = X + M;
 
        // Else missing element
        // is in that row
        else {
 
            // Initializing first element
            //  of the row
            int Y = X - M + 1;
 
            // Initializing column index
            int j = 0;
 
            // Linear Search
            while (Y <= X) {
                if (Mat[i][j] == Y) {
                    Y++;
                    j++;
                }
                else
                    return Y;
            }
        }
    }
    return 0;
}
 
// Driver Code
public static void main(String[] args)
{
    int N = 3;
    int M = 4;
 
    int Mat[][] = { { 1, 2, 3, 4 },
                       { 5, 6, 7, 8 },
                       9, 11, 12, 13 } };
 
    System.out.print(check(Mat, N, M));
}
}
 
// This code is contributed by Rajput-Ji


Python3




# Python 3 program for the above approach
  
# Function to return Missing
# Element from matrix Mat
def check(Mat, N, M):
     
    # Edge Case
    if (Mat[0][0] != 1):
        return 1
 
    # Initialize last element of
    # first row
    X = Mat[0][0] + M - 1;
 
    for i in range(N):
 
        # If last element of respective row
        # matches respective multiples of X
        if (Mat[i][M - 1] == X):
            X = X + M
 
        # Else missing element
        # is in that row
        else:
 
            # Initializing first element
            #  of the row
            Y = X - M + 1
 
            # Initializing column index
            j = 0;
 
            # Linear Search
            while (Y <= X):
                if (Mat[i][j] == Y):
                    Y = Y + 1
                    j = j + 1
                else:
                    return Y
 
# Driver Code
if __name__ == "__main__":
 
    N, M = 3, 4
     
    Mat = [[ 1, 2, 3, 4 ],
           [ 5, 6, 7, 8 ],
           [ 9, 11, 12, 13]]
            
    ans = check(Mat, N, M)
    print(ans)
 
# This code is contributed by Abhishek Thakur.


C#




// C# program for the above approach
using System;
class GFG {
 
 
  // Function to return Missing
  // Element from matrix Mat
  static int check(int [,] Mat, int N, int M)
  {
    // Edge Case
    if (Mat[0, 0] != 1)
      return 1;
 
    // Initialize last element of
    // first row
    int X = Mat[0, 0] + M - 1;
 
    for (int i = 0; i < N; i++) {
 
      // If last element of respective row
      // matches respective multiples of X
      if (Mat[i, M - 1] == X)
        X = X + M;
 
      // Else missing element
      // is in that row
      else {
 
        // Initializing first element
        //  of the row
        int Y = X - M + 1;
 
        // Initializing column index
        int j = 0;
 
        // Linear Search
        while (Y <= X) {
          if (Mat[i, j] == Y) {
            Y++;
            j++;
          }
          else
            return Y;
        }
      }
    }
    return 0;
  }
 
  // Driver Code
  public static void Main()
  {
    int N = 3;
    int M = 4;
 
    int[, ] Mat = { { 1, 2, 3, 4 },
                   { 5, 6, 7, 8 },
                   { 9, 11, 12, 13 } };
 
    Console.Write(check(Mat, N, M));
  }
}
 
// This code is contributed by ukasp.


Javascript




<script>
        // JavaScript code for the above approach
 
        let Max = 1000
 
        // Function to return Missing
        // Element from matrix Mat
        function check(Mat, N, M) {
            // Edge Case
            if (Mat[0][0] != 1)
                return 1;
 
            // Initialize last element of
            // first row
            let X = Mat[0][0] + M - 1;
 
            for (let i = 0; i < N; i++) {
 
                // If last element of respective row
                // matches respective multiples of X
                if (Mat[i][M - 1] == X)
                    X = X + M;
 
                // Else missing element
                // is in that row
                else {
 
                    // Initializing first element
                    //  of the row
                    let Y = X - M + 1;
 
                    // Initializing column index
                    let j = 0;
 
                    // Linear Search
                    while (Y <= X) {
                        if (Mat[i][j] == Y) {
                            Y++;
                            j++;
                        }
                        else
                            return Y;
                    }
                }
            }
        }
 
        // Driver Code
 
        let N = 3;
        let M = 4;
 
        let Mat = [[1, 2, 3, 4],
        [5, 6, 7, 8],
        [9, 11, 12, 13]];
 
        document.write(check(Mat, N, M));
 
  // This code is contributed by Potta Lokesh
    </script>


 
 

Output

10





Time Complexity: O(N + M)
Auxiliary Space: O(1)

Efficient Approach: The efficient approach is to check multiples of the last element in rows using a binary search algorithm. If it does not match then the missing element is in that row or its previous rows and if it matches then the missing element is in the next rows. First, find that row using binary search then apply binary search in that row in the same way to find the column.

Below is the implementation of the above approach: 

C++




// C++ program to implement the above approach
#include <bits/stdc++.h>
using namespace std;
#define Max 1000
 
// Function to return Missing
// Element from matrix MAt
int check(int Mat[][Max], int N, int M)
{
 
    // Edge Case
    if (Mat[0][0] != 1)
        return 1;
 
    // Initialize last element of
    // first row
    int X = Mat[0][0] + M - 1;
    int m, l = 0, h = N - 1;
 
    // Checking for row
    while (l < h) {
 
        // Avoiding overflow
        m = l + (h - l) / 2;
 
        if (Mat[m][M - 1] == X * (m + 1))
            l = m + 1;
        else
            h = m;
    }
 
    // Set the required row index and
    // last element of previous row
    int R = h;
    X = X * h;
    l = 0, h = M - 1;
 
    // Checking for column
    while (l < h) {
 
        // Avoiding overflow
        m = l + (h - l) / 2;
 
        if (Mat[R][m] == X + (m + 1))
            l = m + 1;
        else
            h = m;
    }
 
    // Returning Missing Element
    return X + h + 1;
}
 
// Driver Code
int main()
{
    int N = 3;
    int M = 4;
    int Mat[][Max] = { { 1, 2, 3, 4 },
                       { 5, 6, 7, 8 },
                       { 9, 11, 12, 13 } };
    cout << check(Mat, N, M);
    return 0;
}


Java




// Java program to implement the above approach
import java.util.*;
class GFG{
 
  // Function to return Missing
  // Element from matrix MAt
  static int check(int Mat[][], int N, int M)
  {
 
    // Edge Case
    if (Mat[0][0] != 1)
      return 1;
 
    // Initialize last element of
    // first row
    int X = Mat[0][0] + M - 1;
    int m, l = 0, h = N - 1;
 
    // Checking for row
    while (l < h) {
 
      // Avoiding overflow
      m = l + (h - l) / 2;
 
      if (Mat[m][M - 1] == X * (m + 1))
        l = m + 1;
      else
        h = m;
    }
 
    // Set the required row index and
    // last element of previous row
    int R = h;
    X = X * h;
    l = 0;
    h = M - 1;
 
    // Checking for column
    while (l < h) {
 
      // Avoiding overflow
      m = l + (h - l) / 2;
 
      if (Mat[R][m] == X + (m + 1))
        l = m + 1;
      else
        h = m;
    }
 
    // Returning Missing Element
    return X + h + 1;
  }
 
  // Driver Code
  public static void main(String[] args)
  {
    int N = 3;
    int M = 4;
    int Mat[][] = { { 1, 2, 3, 4 },
                   { 5, 6, 7, 8 },
                   { 9, 11, 12, 13 } };
    System.out.print(check(Mat, N, M));
  }
}
 
// This code is contributed by Rajput-Ji


Python3




# Python program to implement the above approach
 
# Function to return Missing
# Element from matrix MAt
def check(Mat, N, M):
 
    # Edge Case
    if (Mat[0][0] != 1):
        return 1;
 
    # Initialize last element of
    # first row
    X = Mat[0][0] + M - 1;
    m = 0;
    l = 0
    h = N - 1;
 
    # Checking for row
    while (l < h):
 
        # Avoiding overflow
        m = l + (h - l) // 2;
 
        if (Mat[m][M - 1] == X * (m + 1)):
            l = m + 1;
        else:
            h = m;
     
 
    # Set the required row index and
    # last element of previous row
    R = h;
    X = X * h;
    l = 0;
    h = M - 1;
 
    # Checking for column
    while (l < h):
 
        # Avoiding overflow
        m = l + (h - l) // 2;
 
        if (Mat[R][m] == X + (m + 1)):
            l = m + 1;
        else:
            h = m;
     
    # Returning Missing Element
    return X + h + 1;
 
# Driver Code
if __name__ == '__main__':
    N = 3;
    M = 4;
    Mat = [[ 1, 2, 3, 4 ],[ 5, 6, 7, 8 ],[ 9, 11, 12, 13 ]] ;
    print(check(Mat, N, M));
 
 
# This code is contributed by Rajput-Ji


C#




// C# program to implement the above approach
using System;
 
public class GFG{
 
  // Function to return Missing
  // Element from matrix MAt
  static int check(int [,]Mat, int N, int M)
  {
 
    // Edge Case
    if (Mat[0,0] != 1)
      return 1;
 
    // Initialize last element of
    // first row
    int X = Mat[0,0] + M - 1;
    int m, l = 0, h = N - 1;
 
    // Checking for row
    while (l < h) {
 
      // Avoiding overflow
      m = l + (h - l) / 2;
 
      if (Mat[m,M - 1] == X * (m + 1))
        l = m + 1;
      else
        h = m;
    }
 
    // Set the required row index and
    // last element of previous row
    int R = h;
    X = X * h;
    l = 0;
    h = M - 1;
 
    // Checking for column
    while (l < h) {
 
      // Avoiding overflow
      m = l + (h - l) / 2;
 
      if (Mat[R,m] == X + (m + 1))
        l = m + 1;
      else
        h = m;
    }
 
    // Returning Missing Element
    return X + h + 1;
  }
 
  // Driver Code
  public static void Main(String[] args)
  {
    int N = 3;
    int M = 4;
    int [,]Mat = { { 1, 2, 3, 4 },
                  { 5, 6, 7, 8 },
                  { 9, 11, 12, 13 } };
    Console.Write(check(Mat, N, M));
  }
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
// javascript program to implement the above approach
 
    // Function to return Missing
    // Element from matrix MAt
    function check(Mat , N , M) {
 
        // Edge Case
        if (Mat[0][0] != 1)
            return 1;
 
        // Initialize last element of
        // first row
        var X = Mat[0][0] + M - 1;
        var m, l = 0, h = N - 1;
 
        // Checking for row
        while (l < h) {
 
            // Afunctioning overflow
            m = l + parseInt((h - l) / 2);
 
            if (Mat[m][M - 1] == X * (m + 1))
                l = m + 1;
            else
                h = m;
        }
 
        // Set the required row index and
        // last element of previous row
        var R = h;
        X = X * h;
        l = 0;
        h = M - 1;
 
        // Checking for column
        while (l < h) {
 
            // Afunctioning overflow
            m = l + parseInt((h - l) / 2);
 
            if (Mat[R][m] == X + (m + 1))
                l = m + 1;
            else
                h = m;
        }
 
        // Returning Missing Element
        return X + h + 1;
    }
 
    // Driver Code
        var N = 3;
        var M = 4;
        var Mat = [ [ 1, 2, 3, 4 ],
        [ 5, 6, 7, 8 ],
        [ 9, 11, 12, 13 ] ];
        document.write(check(Mat, N, M));
 
// This code is contributed by Rajput-Ji
</script>


Output

10





Time Complexity: O(log N + log M)
Auxiliary Space: O(1)

Last Updated :
29 Oct, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments