Friday, January 10, 2025
Google search engine
HomeData Modelling & AIFind the maximum element in the array other than A

Find the maximum element in the array other than A

Given an array arr[] of size N. The task is to find maximum element among N – 1 elements other than arr[i] for each i from 1 to N.
Examples: 
 

Input: arr[] = {2, 5, 6, 1, 3} 
Output: 6 6 5 6 6 
Input: arr[] = {1, 2, 3} 
Output: 3 3 2 
 

 

Approach: An efficient approach is to make prefix and suffix array of maximum elements and find maximum element among N – 1 elements other than arr[i].
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find maximum element
// among (N - 1) elements other than
// a[i] for each i from 1 to N
int max_element(int a[], int n)
{
    // To store prefix max element
    int pre[n];
 
    pre[0] = a[0];
    for (int i = 1; i < n; i++)
        pre[i] = max(pre[i - 1], a[i]);
 
    // To store suffix max element
    int suf[n];
 
    suf[n - 1] = a[n - 1];
    for (int i = n - 2; i >= 0; i--)
        suf[i] = max(suf[i + 1], a[i]);
 
    // Find the maximum element
    // in the array other than a[i]
    for (int i = 0; i < n; i++) {
        if (i == 0)
            cout << suf[i + 1] << " ";
 
        else if (i == n - 1)
            cout << pre[i - 1] << " ";
 
        else
            cout << max(pre[i - 1], suf[i + 1]) << " ";
    }
}
 
// Driver code
int main()
{
    int a[] = { 2, 5, 6, 1, 3 };
    int n = sizeof(a) / sizeof(a[0]);
 
    max_element(a, n);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
 
// Function to find maximum element
// among (N - 1) elements other than
// a[i] for each i from 1 to N
static void max_element(int a[], int n)
{
    // To store prefix max element
    int []pre = new int[n];
 
    pre[0] = a[0];
    for (int i = 1; i < n; i++)
        pre[i] = Math.max(pre[i - 1], a[i]);
 
    // To store suffix max element
    int []suf = new int[n];
 
    suf[n - 1] = a[n - 1];
    for (int i = n - 2; i >= 0; i--)
        suf[i] = Math.max(suf[i + 1], a[i]);
 
    // Find the maximum element
    // in the array other than a[i]
    for (int i = 0; i < n; i++)
    {
        if (i == 0)
            System.out.print(suf[i + 1] + " ");
 
        else if (i == n - 1)
            System.out.print(pre[i - 1] + " ");
 
        else
            System.out.print(Math.max(pre[i - 1],
                              suf[i + 1]) + " ");
    }
}
 
// Driver code
public static void main(String []args)
{
    int a[] = { 2, 5, 6, 1, 3 };
    int n = a.length;
 
    max_element(a, n);
}
}
 
// This code is contributed by Rajput-Ji


Python3




# Python3 implementation of the approach
 
# Function to find maximum element
# among (N - 1) elements other than
# a[i] for each i from 1 to N
def max_element(a, n) :
 
    # To store prefix max element
    pre = [0] * n;
 
    pre[0] = a[0];
    for i in range(1, n) :
        pre[i] = max(pre[i - 1], a[i]);
 
    # To store suffix max element
    suf = [0] * n;
 
    suf[n - 1] = a[n - 1];
    for i in range(n - 2, -1, -1) :
        suf[i] = max(suf[i + 1], a[i]);
 
    # Find the maximum element
    # in the array other than a[i]
    for i in range(n) :
        if (i == 0) :
            print(suf[i + 1], end = " ");
 
        elif (i == n - 1) :
            print(pre[i - 1], end = " ");
 
        else :
            print(max(pre[i - 1],
                      suf[i + 1]), end = " ");
 
# Driver code
if __name__ == "__main__" :
 
    a = [ 2, 5, 6, 1, 3 ];
    n = len(a);
 
    max_element(a, n);
 
# This code is contributed by AnkitRai01


C#




// C# implementation of the approach
using System;
 
class GFG
{
 
// Function to find maximum element
// among (N - 1) elements other than
// a[i] for each i from 1 to N
static void max_element(int []a, int n)
{
    // To store prefix max element
    int []pre = new int[n];
 
    pre[0] = a[0];
    for (int i = 1; i < n; i++)
        pre[i] = Math.Max(pre[i - 1], a[i]);
 
    // To store suffix max element
    int []suf = new int[n];
 
    suf[n - 1] = a[n - 1];
    for (int i = n - 2; i >= 0; i--)
        suf[i] = Math.Max(suf[i + 1], a[i]);
 
    // Find the maximum element
    // in the array other than a[i]
    for (int i = 0; i < n; i++)
    {
        if (i == 0)
            Console.Write(suf[i + 1] + " ");
 
        else if (i == n - 1)
            Console.Write(pre[i - 1] + " ");
 
        else
            Console.Write(Math.Max(pre[i - 1],
                           suf[i + 1]) + " ");
    }
}
 
// Driver code
public static void Main(String []args)
{
    int []a = { 2, 5, 6, 1, 3 };
    int n = a.Length;
 
    max_element(a, n);
}
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
// Javascript implementation of the approach
 
// Function to find maximum element
// among (N - 1) elements other than
// a[i] for each i from 1 to N
function max_element(a, n)
{
 
    // To store prefix max element
    let pre = new Array(n);
 
    pre[0] = a[0];
    for (let i = 1; i < n; i++)
        pre[i] = Math.max(pre[i - 1], a[i]);
 
    // To store suffix max element
    let suf = new Array(n);
 
    suf[n - 1] = a[n - 1];
    for (let i = n - 2; i >= 0; i--)
        suf[i] = Math.max(suf[i + 1], a[i]);
 
    // Find the maximum element
    // in the array other than a[i]
    for (let i = 0; i < n; i++) {
        if (i == 0)
            document.write(suf[i + 1] + " ");
 
        else if (i == n - 1)
            document.write(pre[i - 1] + " ");
 
        else
            document.write(Math.max(pre[i - 1], suf[i + 1]) + " ");
    }
}
 
// Driver code
let a = [2, 5, 6, 1, 3];
let n = a.length;
max_element(a, n);
 
// This code is contributed by _saurabh_jaiswal
</script>


Output: 

6 6 5 6 6

 

Time Complexity: O(n)

Auxiliary Space: O(n)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments