Given a two dimensional grid, each cell of which contains integer cost which represents a cost to traverse through that cell. The task is to find the maximum cost path from the bottom-left corner to the top-right corner.
Note: Use up and right moves only
Examples:
Input : mat[][] = {{20, -10, 0}, {1, 5, 10}, {1, 2, 3}} Output : 18 (2, 0) ==> (2, 1) ==> (1, 1) ==> (1, 2) ==> (0, 2) cost for this path is (1+2+5+10+0) = 18 Input : mat[][] = {{1, -2, -3}, {1, 15, 10}, {1, -2, 3}} Output : 24
Prerequisites: Minimum Cost Path with Left, Right, Bottom and Up moves allowed
Approach: The idea is to maintain a separate array to store the maximum cost for all the cells using queue. For every cell check if current cost in reaching that cell is more than the previous cost or not. If previous cost is minimum then update the cell with the current cost.
Below is the implementation of the above approach :
C++
// C++ program to find maximum cost to reach // top right corner from bottom left corner #include <bits/stdc++.h> using namespace std; #define ROW 3 #define COL 3 // To store matrix cell coordinates struct Point { int x; int y; }; // Check whether given cell (row, col) // is a valid cell or not. bool isValid(Point p) { // Return true if row number and column number // is in range return (p.x >=0) && (p.y <COL); } // Function to find maximum cost to reach // top right corner from bottom left corner int find_max_cost( int mat[][COL]) { int max_val[ROW][COL]; memset (max_val, 0, sizeof max_val); max_val[ROW-1][0] = mat[ROW-1][0]; // Starting point Point src = {ROW-1,0}; // Create a queue for traversal queue<Point> q; q.push(src); // Enqueue source cell // Do a BFS starting from source cell // on the allowed direction while (!q.empty()) { Point curr = q.front(); q.pop(); // Find up point Point up = {curr.x-1, curr.y}; // if adjacent cell is valid, enqueue it. if (isValid(up)) { max_val[up.x][up.y] = max(max_val[up.x][up.y], mat[up.x][up.y] + max_val[curr.x][curr.y]); q.push(up); } // Find right point Point right = {curr.x, curr.y+1}; if (isValid(right)) { max_val[right.x][right.y] = max(max_val[right.x][right.y], mat[right.x][right.y] + max_val[curr.x][curr.y]); q.push(right); } } // Return the required answer return max_val[0][COL-1]; } // Driver code int main() { int mat[ROW][COL] = { {20, -10, 0}, {1, 5, 10}, {1, 2, 3},}; std::cout<< "Given matrix is " <<endl; for ( int i = 0 ; i<ROW;++i) { for ( int j =0; j<COL; ++j) std::cout<<mat[i][j]<< " " ; std::cout<<endl; } std::cout<< "Maximum cost is " << find_max_cost(mat); return 0; } |
Java
// Java program to find maximum cost to reach // top right corner from bottom left corner import java.util.*; class GFG { static int ROW = 3 ; static int COL = 3 ; // To store matrix cell coordinates static class Point { int x; int y; public Point( int x, int y) { this .x = x; this .y = y; } } // Check whether given cell (row, col) // is a valid cell or not. static boolean isValid(Point p) { // Return true if row number and column number // is in range return (p.x >= 0 ) && (p.y < COL); } // Function to find maximum cost to reach // top right corner from bottom left corner static int find_max_cost( int mat[][]) { int [][]max_val = new int [ROW][COL]; max_val[ROW - 1 ][ 0 ] = mat[ROW - 1 ][ 0 ]; // Starting point Point src = new Point(ROW - 1 , 0 ); // Create a queue for traversal Queue<Point> q = new LinkedList<>(); q.add(src); // Enqueue source cell // Do a BFS starting from source cell // on the allowed direction while (!q.isEmpty()) { Point curr = q.peek(); q.remove(); // Find up point Point up = new Point(curr.x - 1 , curr.y); // if adjacent cell is valid, enqueue it. if (isValid(up)) { max_val[up.x][up.y] = Math.max(max_val[up.x][up.y], mat[up.x][up.y] + max_val[curr.x][curr.y]); q.add(up); } // Find right point Point right = new Point(curr.x, curr.y + 1 ); if (isValid(right)) { max_val[right.x][right.y] = Math.max(max_val[right.x][right.y], mat[right.x][right.y] + max_val[curr.x][curr.y]); q.add(right); } } // Return the required answer return max_val[ 0 ][COL - 1 ]; } // Driver code public static void main(String[] args) { int mat[][] = {{ 20 , - 10 , 0 }, { 1 , 5 , 10 }, { 1 , 2 , 3 }}; System.out.println( "Given matrix is " ); for ( int i = 0 ; i < ROW; ++i) { for ( int j = 0 ; j < COL; ++j) System.out.print(mat[i][j] + " " ); System.out.println(); } System.out.print( "Maximum cost is " + find_max_cost(mat)); } } // This code is contributed by PrinciRaj1992 |
Python3
# Python3 program to find maximum cost to reach # top right corner from bottom left corner from collections import deque as queue ROW = 3 COL = 3 # Check whether given cell (row, col) # is a valid cell or not. def isValid(p): # Return true if row number and column number # is in range return (p[ 0 ] > = 0 ) and (p[ 1 ] < COL) # Function to find maximum cost to reach # top right corner from bottom left corner def find_max_cost(mat): max_val = [[ 0 for i in range (COL)] for i in range (ROW)] max_val[ROW - 1 ][ 0 ] = mat[ROW - 1 ][ 0 ] # Starting po src = [ROW - 1 , 0 ] # Create a queue for traversal q = queue() q.appendleft(src) # Enqueue source cell # Do a BFS starting from source cell # on the allowed direction while ( len (q) > 0 ): curr = q.pop() # Find up point up = [curr[ 0 ] - 1 , curr[ 1 ]] # if adjacent cell is valid, enqueue it. if (isValid(up)): max_val[up[ 0 ]][up[ 1 ]] = max (max_val[up[ 0 ]][up[ 1 ]],mat[up[ 0 ]][up[ 1 ]] + max_val[curr[ 0 ]][curr[ 1 ]]) q.appendleft(up) # Find right po right = [curr[ 0 ], curr[ 1 ] + 1 ] if (isValid(right)): max_val[right[ 0 ]][right[ 1 ]] = max (max_val[right[ 0 ]][right[ 1 ]],mat[right[ 0 ]][right[ 1 ]] + max_val[curr[ 0 ]][curr[ 1 ]]) q.appendleft(right) # Return the required answer return max_val[ 0 ][COL - 1 ] # Driver code mat = [[ 20 , - 10 , 0 ], [ 1 , 5 , 10 ], [ 1 , 2 , 3 ]] print ( "Given matrix is " ) for i in range (ROW): for j in range (COL): print (mat[i][j],end = " " ) print () print ( "Maximum cost is " , find_max_cost(mat)) # This code is contributed by mohit kumar 29 |
C#
// C# program to find maximum cost to reach // top right corner from bottom left corner using System; using System.Collections.Generic; class GFG { static int ROW = 3; static int COL = 3; // To store matrix cell coordinates public class Point { public int x; public int y; public Point( int x, int y) { this .x = x; this .y = y; } } // Check whether given cell (row, col) // is a valid cell or not. static Boolean isValid(Point p) { // Return true if row number and // column number is in range return (p.x >= 0) && (p.y < COL); } // Function to find maximum cost to reach // top right corner from bottom left corner static int find_max_cost( int [,]mat) { int [,]max_val = new int [ROW,COL]; max_val[ROW - 1, 0] = mat[ROW - 1, 0]; // Starting point Point src = new Point(ROW - 1, 0); // Create a queue for traversal Queue<Point> q = new Queue<Point>(); q.Enqueue(src); // Enqueue source cell // Do a BFS starting from source cell // on the allowed direction while (q.Count != 0) { Point curr = q.Peek(); q.Dequeue(); // Find up point Point up = new Point(curr.x - 1, curr.y); // if adjacent cell is valid, enqueue it. if (isValid(up)) { max_val[up.x, up.y] = Math.Max(max_val[up.x, up.y], mat[up.x, up.y] + max_val[curr.x, curr.y]); q.Enqueue(up); } // Find right point Point right = new Point(curr.x, curr.y + 1); if (isValid(right)) { max_val[right.x, right.y] = Math.Max(max_val[right.x, right.y], mat[right.x, right.y] + max_val[curr.x, curr.y]); q.Enqueue(right); } } // Return the required answer return max_val[0, COL - 1]; } // Driver code public static void Main(String[] args) { int [,]mat = {{20, -10, 0}, {1, 5, 10}, {1, 2, 3}}; Console.WriteLine( "Given matrix is " ); for ( int i = 0 ; i < ROW; ++i) { for ( int j = 0; j < COL; ++j) Console.Write(mat[i, j] + " " ); Console.WriteLine(); } Console.Write( "Maximum cost is " + find_max_cost(mat)); } } // This code is contributed by Princi Singh |
Javascript
<script> // Javascript program to find maximum cost to reach // top right corner from bottom left corner let ROW = 3; let COL = 3; // To store matrix cell coordinates class Point { constructor(x, y) { this .x = x; this .y = y; } } // Check whether given cell (row, col) // is a valid cell or not. function isValid(p) { // Return true if row number and column // number is in range return (p.x >= 0) && (p.y < COL); } // Function to find maximum cost to reach // top right corner from bottom left corner function find_max_cost(mat) { let max_val = new Array(ROW); for (let i = 0; i < ROW; i++) { max_val[i] = new Array(COL); for (let j = 0; j < COL; j++) { max_val[i][j] = 0; } } max_val[ROW - 1][0] = mat[ROW - 1][0]; // Starting point let src = new Point(ROW - 1, 0); // Create a queue for traversal let q = []; // Enqueue source cell q.push(src); // Do a BFS starting from source cell // on the allowed direction while (q.length != 0) { let curr = q.shift(); // Find up point let up = new Point(curr.x - 1, curr.y); // If adjacent cell is valid, enqueue it. if (isValid(up)) { max_val[up.x][up.y] = Math.max(max_val[up.x][up.y], mat[up.x][up.y] + max_val[curr.x][curr.y]); q.push(up); } // Find right point let right = new Point(curr.x, curr.y + 1); if (isValid(right)) { max_val[right.x][right.y] = Math.max(max_val[right.x][right.y], mat[right.x][right.y] + max_val[curr.x][curr.y]); q.push(right); } } // Return the required answer return max_val[0][COL - 1]; } // Driver code let mat = [ [ 20, -10, 0 ], [ 1, 5, 10 ], [ 1, 2, 3 ] ]; document.write( "Given matrix is <br>" ); for (let i = 0; i < ROW; ++i) { for (let j = 0; j < COL; ++j) document.write(mat[i][j] + " " ); document.write( "<br>" ); } document.write( "Maximum cost is " + find_max_cost(mat)); // This code is contributed by patel2127 </script> |
Given matrix is 20 -10 0 1 5 10 1 2 3 Maximum cost is 18
Time Complexity: O(ROW * COL)
Auxiliary Space: O(ROW * COL)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!