Given an array arr[] of size N, and integer K. The task is to find the longest subarray with the difference between adjacent elements as K.
Examples:
Input: arr[] = { 5, 5, 5, 10, 8, 6, 12, 13 }, K =1
Output: {12, 13}
Explanation: This is the longest subarray with difference between adjacents as 1.Input: arr[] = {4, 6, 8, 9, 8, 12, 14, 17, 15}, K = 2
Output: {4, 6, 8}
Approach: Starting from the first element of the array, find the first valid sub-array and store its length and starting point. Then starting from the next element (the first element that wasn’t included in the first sub-array), find another valid sub-array and keep on updating the maximum length and start point. Repeat the process until all the valid sub-arrays have been found then print the maximum length sub-array.
Below is the implementation of the above approach.
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the maximum length // sub-array such that the // absolute difference between every two // consecutive elements is K void getMaxLengthSubarray( int arr[], int N, int K) { int l = N; int i = 0, maxlen = 0; int max_len_start, max_len_end; while (i < l) { int j = i; while (i + 1 < l && ( abs (arr[i] - arr[i + 1]) == K)) { i++; } // Length of the valid sub-array // currently under consideration int currLen = i - j + 1; // Update the maximum length subarray if (maxlen < currLen) { maxlen = currLen; max_len_start = j; max_len_end = i; } if (j == i) i++; } // Print the maximum length subarray for ( int p = max_len_start; p <= max_len_end; p++) cout << arr[p] << " " ; } // Driver code int main() { int arr[] = { 4, 6, 8, 9, 8, 12, 14, 17, 15 }; int K = 2; int N = sizeof (arr) / sizeof (arr[0]); getMaxLengthSubarray(arr, N, K); return 0; } |
Java
// Java program for the above approach import java.util.*; public class GFG { // Function to return the maximum length // sub-array such that the // absolute difference between every two // consecutive elements is K static void getMaxLengthSubarray( int arr[], int N, int K) { int l = N; int i = 0 , maxlen = 0 ; int max_len_start = 0 , max_len_end = 0 ; while (i < l) { int j = i; while (i + 1 < l && (Math.abs(arr[i] - arr[i + 1 ]) == K)) { i++; } // Length of the valid sub-array // currently under consideration int currLen = i - j + 1 ; // Update the maximum length subarray if (maxlen < currLen) { maxlen = currLen; max_len_start = j; max_len_end = i; } if (j == i) i++; } // Print the maximum length subarray for ( int p = max_len_start; p <= max_len_end; p++) System.out.print(arr[p] + " " ); } // Driver code public static void main(String args[]) { int arr[] = { 4 , 6 , 8 , 9 , 8 , 12 , 14 , 17 , 15 }; int K = 2 ; int N = arr.length; getMaxLengthSubarray(arr, N, K); } } // This code is contributed by Samim Hossain Mondal. |
Python3
# Python program to implement # the above approach # Function to return the maximum length # sub-array such that the # absolute difference between every two # consecutive elements is K def getMaxLengthSubarray(arr, N, K) : l = N i = 0 maxlen = 0 while (i < l) : j = i while (i + 1 < l and ( abs (arr[i] - arr[i + 1 ]) = = K)) : i + = 1 # Length of the valid sub-array # currently under consideration currLen = i - j + 1 # Update the maximum length subarray if (maxlen < currLen) : maxlen = currLen max_len_start = j max_len_end = i if (j = = i) : i + = 1 # Print the maximum length subarray for p in range (max_len_start, max_len_end + 1 , 1 ) : print (arr[p], end = " " ) # Driver code arr = [ 4 , 6 , 8 , 9 , 8 , 12 , 14 , 17 , 15 ] K = 2 N = len (arr) getMaxLengthSubarray(arr, N, K) # This code is contributed by avijitmondal1998 |
C#
// C# program for the above approach using System; class GFG { // Function to return the maximum length // sub-array such that the // absolute difference between every two // consecutive elements is K static void getMaxLengthSubarray( int []arr, int N, int K) { int l = N; int i = 0, maxlen = 0; int max_len_start = 0, max_len_end = 0; while (i < l) { int j = i; while (i + 1 < l && (Math.Abs(arr[i] - arr[i + 1]) == K)) { i++; } // Length of the valid sub-array // currently under consideration int currLen = i - j + 1; // Update the maximum length subarray if (maxlen < currLen) { maxlen = currLen; max_len_start = j; max_len_end = i; } if (j == i) i++; } // Print the maximum length subarray for ( int p = max_len_start; p <= max_len_end; p++) Console.Write(arr[p] + " " ); } // Driver code public static void Main() { int []arr = { 4, 6, 8, 9, 8, 12, 14, 17, 15 }; int K = 2; int N = arr.Length; getMaxLengthSubarray(arr, N, K); } } // This code is contributed by Samim Hossain Mondal. |
Javascript
<script> // JavaScript code for the above approach // Function to return the maximum length // sub-array such that the // absolute difference between every two // consecutive elements is K function getMaxLengthSubarray(arr, N, K) { let l = N; let i = 0, maxlen = 0; let max_len_start, max_len_end; while (i < l) { let j = i; while (i + 1 < l && (Math.abs(arr[i] - arr[i + 1]) == K)) { i++; } // Length of the valid sub-array // currently under consideration let currLen = i - j + 1; // Update the maximum length subarray if (maxlen < currLen) { maxlen = currLen; max_len_start = j; max_len_end = i; } if (j == i) i++; } // Print the maximum length subarray for (let p = max_len_start; p <= max_len_end; p++) document.write(arr[p] + " " ); } // Driver code let arr = [4, 6, 8, 9, 8, 12, 14, 17, 15]; let K = 2; let N = arr.length; getMaxLengthSubarray(arr, N, K); // This code is contributed by Potta Lokesh </script> |
4 6 8
Time Complexity: O(N)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!