Friday, October 10, 2025
HomeData Modelling & AIFind the longest Fibonacci-like subarray of the given array

Find the longest Fibonacci-like subarray of the given array

Given an array of N elements, the task is to find the longest subarray which is Fibonacci-like. 
A Fibonacci-like sub-array is defined as an array in which: 
 

A[i]=A[i-1]+A[i-2] where i>2

and, A[1] and A[2] can be anything.

Examples: 
 

Input : N = 5, arr[] = {2, 4, 6, 10, 2}
Output : 4
The sub-array 2, 4, 6, 10 is Fibonacci like.

Input : N = 3, arr[] = {0, 0, 0}
Output : 3
The entire array is Fibonacci-like.

 

Approach:
The idea is to observe that any array of length of less than or equal to 2 is Fibonacci-like. Now, for arrays of length greater than 2:
 

  1. Maintain a variable len initialized to 2 and a variable mx to store the maximum length so far.
  2. Start traversing the array from 3rd index.
  3. If the fibonacci like array can be extended for this index, i.e. if a[i] = a[i-1] + a[i-2] 
    • Then increment the value of variable len by 1.
    • Otherwise reinitialize the variable len to 2.
    • Store the maximum of mx and len in the variable mx for current iteration.

Below is the implementation of the above approach: 
 

C++




// C++ program to find length of longest
// Fibonacci-like subarray
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the length of the
// longest Fibonacci-like subarray
int longestFibonacciSubarray(int n, int a[])
{
    // Any 2 terms are Fibonacci-like
    if (n <= 2)
        return n;
     
    int len = 2;
     
    int mx = INT_MIN;
     
    for (int i = 2; i < n; i++) {
         
        // If previous subarray can be extended
        if (a[i] == a[i - 1] + a[i - 2])
            len++;
             
        // Any 2 terms are Fibonacci-like
        else
            len = 2;
             
        // Find the maximum length
        mx = max(mx, len);
    }
     
    return mx;
}
 
// Driver Code
int main()
{
    int n = 5;
    int a[] = {2, 4, 6, 10, 2};
     
    cout << longestFibonacciSubarray(n, a);
     
    return 0;
}


Java




// Java program to find length of longest
// Fibonacci-like subarray
class GFG
{
     
    // Function to find the length of the
    // longest Fibonacci-like subarray
    static int longestFibonacciSubarray(int n, int a[])
    {
        // Any 2 terms are Fibonacci-like
        if (n <= 2)
            return n;
         
        int len = 2;
         
        int mx = Integer.MIN_VALUE;
         
        for (int i = 2; i < n; i++)
        {
             
            // If previous subarray can be extended
            if (a[i] == a[i - 1] + a[i - 2])
                len++;
                 
            // Any 2 terms are Fibonacci-like
            else
                len = 2;
                 
            // Find the maximum length
            mx = Math.max(mx, len);
        }
        return mx;
    }
     
    // Driver Code
    public static void main (String[] args)
    {
        int n = 5;
        int a[] = {2, 4, 6, 10, 2};
         
        System.out.println(longestFibonacciSubarray(n, a));
    }
}
 
// This code is contributed by Ryuga


Python3




# Python3 program to find Length of
# longest Fibonacci-like subarray
 
# Function to find the Length of the
# longest Fibonacci-like subarray
def longestFibonacciSubarray(n, a):
 
    # Any 2 terms are Fibonacci-like
    if (n <= 2):
        return n
     
    Len = 2
     
    mx = -10**9
     
    for i in range(2, n):
         
        # If previous subarray can be extended
        if (a[i] == a[i - 1] + a[i - 2]):
            Len += 1
             
        # Any 2 terms are Fibonacci-like
        else:
            Len = 2
             
        # Find the maximum Length
        mx = max(mx, Len)
     
    return mx
 
# Driver Code
n = 5
a = [2, 4, 6, 10, 2]
 
print(longestFibonacciSubarray(n, a))
 
# This code is contributed by Mohit Kumar


C#




// C# program to find length of longest
// Fibonacci-like subarray
using System;
 
class GFG
{
     
    // Function to find the length of the
    // longest Fibonacci-like subarray
    static int longestFibonacciSubarray(int n, int[] a)
    {
        // Any 2 terms are Fibonacci-like
        if (n <= 2)
            return n;
         
        int len = 2;
         
        int mx = int.MinValue;
         
        for (int i = 2; i < n; i++)
        {
             
            // If previous subarray can be extended
            if (a[i] == a[i - 1] + a[i - 2])
                len++;
                 
            // Any 2 terms are Fibonacci-like
            else
                len = 2;
                 
            // Find the maximum length
            mx = Math.Max(mx, len);
        }
        return mx;
    }
     
    // Driver Code
    public static void Main ()
    {
        int n = 5;
        int[] a = {2, 4, 6, 10, 2};
         
        Console.WriteLine(longestFibonacciSubarray(n, a));
    }
}
 
// This code is contributed by Code_Mech.


PHP




<?php
// PHP program to find length of longest
// Fibonacci-like subarray
 
// Function to find the length of the
// longest Fibonacci-like subarray
function longestFibonacciSubarray($n, $a)
{
    // Any 2 terms are Fibonacci-like
    if ($n <= 2)
        return $n;
     
    $len = 2;
     
    $mx = PHP_INT_MIN;
     
    for ($i = 2; $i < $n; $i++)
    {
         
        // If previous subarray can be extended
        if ($a[$i] == $a[$i - 1] + $a[$i - 2])
            $len++;
             
        // Any 2 terms are Fibonacci-like
        else
            $len = 2;
             
        // Find the maximum length
        $mx = max($mx, $len);
    }
     
    return $mx;
}
 
// Driver Code
$n = 5;
$a = array(2, 4, 6, 10, 2);
     
echo longestFibonacciSubarray($n, $a);
 
// This code is contributed
// by Akanksha Rai   
?>


Javascript




<script>
 
// javascript program to find length of longest
// Fibonacci-like subarray
 
     
    // Function to find the length of the
    // longest Fibonacci-like subarray
    function longestFibonacciSubarray( n,  a)
    {
        // Any 2 terms are Fibonacci-like
        if (n <= 2)
            return n;
         
        var len = 2;
         
        var mx = Number.MIN_VALUE;
  
         
        for (var i = 2; i < n; i++)
        {
             
            // If previous subarray can be extended
            if (a[i] == a[i - 1] + a[i - 2])
                len++;
                 
            // Any 2 terms are Fibonacci-like
            else
                len = 2;
                 
            // Find the maximum length
            mx = Math.max(mx, len);
        }
        return mx;
    }
     
    // Driver Code
 
        var n = 5;
        var a = [2, 4, 6, 10, 2];
         
        document.write(longestFibonacciSubarray(n, a));
   
  // This code is contributed by bunnyram19.
</script>


Output: 

4

 

Time Complexity: O(N) 
Auxiliary Space: O(1)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32350 POSTS0 COMMENTS
Milvus
87 POSTS0 COMMENTS
Nango Kala
6718 POSTS0 COMMENTS
Nicole Veronica
11880 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11941 POSTS0 COMMENTS
Shaida Kate Naidoo
6838 POSTS0 COMMENTS
Ted Musemwa
7099 POSTS0 COMMENTS
Thapelo Manthata
6794 POSTS0 COMMENTS
Umr Jansen
6794 POSTS0 COMMENTS