Friday, January 10, 2025
Google search engine
HomeData Modelling & AIFind the length of maximum path in given matrix for each index

Find the length of maximum path in given matrix for each index

Given a binary square matrix of characters having size N x N such that 1 represents land and 0 represents water, the task is to find the longest straight-line path a person can travel on land without falling into water or outside for each cell (i, j). The straight line can be either horizontal, vertical, or diagonal.

Examples:

Input: N = 4, matrix[][] = { {0, 1, 0, 1},  {0, 1, 1, 1}, {1, 0, 1, 1}, {0, 0, 0, 0} }
Output: 3
Explanation: For each index (i, j), the below output matrix shows the length of the maximum path having continuous land that a person can travel in a straight line.
0 3 0 3 
0 3 3 3 
2 0 2 3 
0 0 0 0
Therefore, the longest straight-line path is 3.

Input: N = 3, matrix[][] = { {0, 1, 1}, {0, 0, 0}, {1, 1, 1} } 
Output: 3 
Explanation: For each index (i, j), the below output matrix shows the length of the maximum path having continuous land that a person can travel in a straight line.
0 2 2
0 0 0
3 3 3
Therefore, the longest straight-line path is 3.

Approach: Implement the idea below to solve the problem:

For the maximum path write the algorithms for vertical, horizontal, and diagonal traversals, and for each index (i, j) traverse over the input matrix and print the maximum length among all the functions for the same index.    

Steps were taken to solve the problem:

  • Write the functions for traversing in each direction, Formally vertical(), horizontal(), and diagonal().
  • Run these functions for each index (i, j) of the input matrix.
  • Output the maximum path by comparing the length of all possible paths for each index (i, j).

Below is the code to implement the above approach:

C++




// C++ code to implement the approach
#include <bits/stdc++.h>
using namespace std;
 
// Input value of N
const int N = 3;
 
// Input matrix
char ch[N][N] = { { '0', '1', '1' },
                 { '0', '0', '0' },
                 { '1', '1', '1' } };
 
// Declaration of Matrices for storing
// length of the path in each direction
// for each index of the input matrix
int H[N][N], V[N][N], DB[N][N], DF[N][N], sol[N][N];
 
// Method for traversing in
// horizontal direction
void horizontal()
{
 
  // Loop for traversing
  // horizontally
  for (int i = 0; i < N; i++) {
    for (int j = 0; j < N; j++) {
 
      // Condition when '1'
      // is found
      if (ch[i][j] == '1') {
 
        // Initialized variables
        // to count the length
        int k = j, count = 0;
 
        // While continuous '1'
        // is found
        while (k < N) {
          if (ch[i][k] == '1') {
            count++;
            k++;
          }
          else {
            break;
          }
        }
        k--;
        for (int l = j; l <= k; l++)
          H[i][l] = count;
        j = k;
      }
      else {
        H[i][j] = 0;
      }
    }
  }
}
 
// Method for vertical traversal
void vertical()
{
 
  // Loop for traversing vertically
  for (int i = 0; i < N; i++) {
    for (int j = 0; j < N; j++) {
 
      // Condition when '1'
      // is found
      if (ch[j][i] == '1') {
 
        // Initialized variables
        // for count length of
        // continuous '1'
        int k = j, count = 0;
 
        // Loop while continuous
        // '1' is found
        while (k < N) {
          if (ch[k][i] == '1') {
            count++;
            k++;
          }
          else {
            break;
          }
        }
        k--;
 
        // Initializing length
        // in matrix
        for (int l = j; l <= k; l++)
          V[l][i] = count;
        j = k;
      }
      else {
        V[j][i] = 0;
      }
    }
  }
}
 
// Loop for traversing diagonally
// in backward direction
void diagonalBackward()
{
 
  // Loop for traversing in backward
  // direction diagonally
  for (int i = 0; i < N; i++) {
    int l = -1;
    for (int j = i; j < N; j++) {
      l++;
 
      // Condition when continuous
      // '1' is found
      if (ch[l][j] == '1') {
 
        // Initialized variables
        // to count length of
        // continuous '1'
        int m = l, n = j, count = 0;
 
        // While loop till
        // continuous '1' is found
        while (n < N) {
          if (ch[m][n] == '1') {
            count++;
            m++;
            n++;
          }
          else {
            break;
          }
        }
        m--;
        n--;
 
        // Initializing
        // values in matrix
        for (int p = j; p <= n; p++) {
          DB[l][p] = count;
          l++;
        }
        l--;
        j = n;
      }
      else {
        DB[l][j] = 0;
      }
    }
  }
 
  // Loop for traversing
  for (int i = 1; i < N; i++) {
    int l = i - 1;
    for (int j = 0; j < (N - i); j++) {
      l++;
 
      // Condition when continuous
      // '1' is found
      if (ch[l][j] == '1') {
 
        // Variables for
        // counting length of
        // continuous '1'
        int m = l, n = j, count = 0;
 
        // While loop for
        // finding length of
        // continuous '1'
        while (n < (N - i)) {
          if (ch[m][n] == '1') {
            count++;
            m++;
            n++;
          }
          else {
            break;
          }
        }
        m--;
        n--;
 
        // Initializing length
        // in matrix
        for (int p = j; p <= n; p++) {
          DB[l][p] = count;
          l++;
        }
        l--;
        j = n;
      }
      else {
        DB[l][j] = 0;
      }
    }
  }
}
 
// Loop for traversing diagonally in
// forward direction
void diagonalForward()
{
 
  // Loop for traversal
  for (int i = 0; i < N; i++) {
    int l = i;
    for (int j = 0; j <= i; j++) {
 
      // Condition when '1'
      // is found
      if (ch[j][l] == '1') {
 
        // Variables initialized
        // to count length of
        // continuous '1'
        int m = j, n = l, count = 0;
 
        // While loop for
        // finding the length of
        // continuous '1'
        while (m <= i) {
          if (ch[m][n] == '1') {
            count++;
            m++;
            n--;
          }
          else {
            break;
          }
        }
        m--;
        n++;
 
        // initializing values
        // in matrix
        for (int p = j; p <= m; p++) {
          DF[p][l] = count;
          l--;
        }
        j = m;
        l = n;
        l--;
      }
      else {
        DF[j][l] = 0;
        l--;
      }
    }
  }
 
  // Loop for traversal
  for (int i = 1; i < N; i++) {
    int l = i;
    for (int j = N - 1; j >= i; j--) {
 
      // Condition when
      // continuous '1' is found
      if (ch[l][j] == '1') {
 
        // Variables initialized
        int m = l, n = j, count = 0;
 
        // While loop for
        // counting length of
        // continuous '1'
        while (n >= i) {
          if (ch[m][n] == '1') {
            count++;
            m++;
            n--;
          }
          else {
            break;
          }
        }
        n++;
        m--;
 
        // Initializing values
        // in matrix
        for (int p = l; p <= m; p++) {
          DF[p][j] = count;
          j--;
        }
        l = m + 1;
        j = n;
      }
      else {
        DF[l][j] = 0;
        l++;
      }
    }
  }
}
 
// Method for creating a matrix of
// maximum length for each index
void maxSol()
{
 
  // Solution matrix
  memset(sol, 0, sizeof sol);
  int max_ = INT_MIN;
 
  // loop for traversing
  for (int i = 0; i < N; i++) {
 
    // Loop for initializing
    // solution matrix by finding
    // maximum length for each index
    // in each direction
    for (int j = 0; j < N; j++) {
      if (H[i][j] >= V[i][j] && H[i][j] >= DB[i][j]
          && H[i][j] >= DF[i][j])
        sol[i][j] = H[i][j];
      else if (V[i][j] >= H[i][j]
               && V[i][j] >= DB[i][j]
               && V[i][j] >= DF[i][j])
        sol[i][j] = V[i][j];
      else if (DB[i][j] >= H[i][j]
               && DB[i][j] >= V[i][j]
               && DB[i][j] >= DF[i][j])
        sol[i][j] = DB[i][j];
      else
        sol[i][j] = DF[i][j];
      max_ = max(max_, sol[i][j]);
    }
  }
 
  // Printing maximum length path
  cout << max_ << endl;
}
 
// Function which is called in the
// driver function
void solution()
{
  // Initialization of matrices for
  // storing the longest path in
  // each index
  for (int i = 0; i < N; i++) {
    for (int j = 0; j < N; j++) {
      H[i][j] = 0;
      V[i][j] = 0;
      DB[i][j] = 0;
      DF[i][j] = 0;
    }
  }
  // Function call for horizontal
  // traversals
  horizontal();
 
  // Function call for vertical
  // traversals
  vertical();
 
  // Function call for diagonal
  // traversals
  diagonalBackward();
 
  diagonalForward();
 
  // Function for printing matrix
  // of the longest path for each index
  // of the input matrix
  maxSol();
}
 
// Driver Code
int main()
{
  // Function call
  solution();
  return 0;
}
 
// This Code is Contributed by Prasad Kandekar(prasad264)


Java




// Java code to implement the approach
import java.io.*;
import java.lang.*;
import java.util.*;
 
class GFG {
 
    // Input value of N
    static int N = 3;
 
    // Input matrix
    static char[][] ch = { { '0', '1', '1' },
                           { '0', '0', '0' },
                           { '1', '1', '1' } };
 
    // Declaration of Matrices for storing
    // length of the path in each direction
    // for each index of the input matrix
    static int[][] H, V, DB, DF, sol;
    public static void main(String[] args)
        throws java.lang.Exception
    {
 
        // Function call
        solution();
    }
 
    // Function which is called in the
    // driver function
    private static void solution()
    {
        // Initialization of matrices for
        // storing the longest path in
        // each index
        H = new int[N][N];
        V = new int[N][N];
        DB = new int[N][N];
        DF = new int[N][N];
 
        // Function call for horizontal
        // traversals
        horizontal();
 
        // Function call for vertical
        // traversals
        vertical();
 
        // Function call for diagonal
        // traversals
        diagonalBackward();
 
        diagonalForward();
 
        // Function for printing matrix
        // of the longest path for each index
        // of the input matrix
        maxSol();
    }
 
    // Method for traversing in
    // horizontal direction
    private static void horizontal()
    {
 
        // Loop for traversing
        // horizontally
        for (int i = 0; i < N; i++) {
 
            for (int j = 0; j < N; j++) {
 
                // Condition when '1'
                // is found
                if (ch[i][j] == '1') {
 
                    // Initialized variables
                    // to count the length
                    int k = j, count = 0;
 
                    // While continuous '1'
                    // is found
                    while (k < N) {
 
                        if (ch[i][k] == '1') {
                            count++;
                            k++;
                        }
                        else {
 
                            break;
                        }
                    }
                    k--;
                    for (int l = j; l <= k; l++)
                        H[i][l] = count;
                    j = k;
                }
                else {
                    H[i][j] = 0;
                }
            }
        }
    }
 
    // Method for vertical traversal
    private static void vertical()
    {
 
        // Loop for traversing vertically
        for (int i = 0; i < N; i++) {
            for (int j = 0; j < N; j++) {
 
                // Condition when '1'
                // is found
                if (ch[j][i] == '1') {
 
                    // Initialized variables
                    // for count length of
                    // continuous '1'
                    int k = j, count = 0;
 
                    // Loop while continuous
                    // '1' is found
                    while (k < N) {
                        if (ch[k][i] == '1') {
                            count++;
                            k++;
                        }
                        else {
 
                            break;
                        }
                    }
                    k--;
 
                    // Initializing length
                    // in matrix
                    for (int l = j; l <= k; l++)
                        V[l][i] = count;
                    j = k;
                }
                else {
                    V[j][i] = 0;
                }
            }
        }
    }
 
    // Loop for traversing diagonally
    // in backward direction
    private static void diagonalBackward()
    {
 
        // Loop for traversing in backward
        // direction diagonally
        for (int i = 0; i < N; i++) {
            int l = -1;
            for (int j = i; j < N; j++) {
                l++;
 
                // Condition when continuous
                // '1' is found
                if (ch[l][j] == '1') {
 
                    // Initialized variables
                    // to count length of
                    // continuous '1'
                    int m = l, n = j, count = 0;
 
                    // While loop till
                    // continuous '1' is found
                    while (n < N) {
                        if (ch[m][n] == '1') {
                            count++;
                            m++;
                            n++;
                        }
                        else {
                            break;
                        }
                    }
                    m--;
                    n--;
 
                    // Initializing
                    // values in matrix
                    for (int p = j; p <= n; p++) {
                        DB[l][p] = count;
                        l++;
                    }
                    l--;
                    j = n;
                }
                else {
                    DB[l][j] = 0;
                }
            }
        }
 
        // Loop for traversing
        for (int i = 1; i < N; i++) {
            int l = i - 1;
            for (int j = 0; j < (N - i); j++) {
                l++;
 
                // Condition when continuous
                // '1' is found
                if (ch[l][j] == '1') {
 
                    // Variables for
                    // counting length of
                    // continuous '1'
                    int m = l, n = j, count = 0;
 
                    // While loop for
                    // finding length of
                    // continuous '1'
                    while (n < (N - i)) {
                        if (ch[m][n] == '1') {
                            count++;
                            m++;
                            n++;
                        }
                        else {
                            break;
                        }
                    }
                    m--;
                    n--;
 
                    // Initializing length
                    // in matrix
                    for (int p = j; p <= n; p++) {
 
                        DB[l][p] = count;
                        l++;
                    }
                    l--;
                    j = n;
                }
                else {
                    DB[l][j] = 0;
                }
            }
        }
    }
 
    // Loop for traversing diagonally in
    // forward direction
    private static void diagonalForward()
    {
 
        // Loop for traversal
        for (int i = 0; i < N; i++) {
            int l = i;
            for (int j = 0; j <= i; j++) {
 
                // Condition when '1'
                // is found
                if (ch[j][l] == '1') {
 
                    // Variables initialized
                    // to count length of
                    // continuous '1'
                    int m = j, n = l, count = 0;
 
                    // While loop for
                    // finding the length of
                    // continuous '1'
                    while (m <= i) {
                        if (ch[m][n] == '1') {
                            count++;
                            m++;
                            n--;
                        }
                        else {
                            break;
                        }
                    }
                    m--;
                    n++;
 
                    // initializing values
                    // in matrix
                    for (int p = j; p <= m; p++) {
                        DF[p][l] = count;
                        l--;
                    }
                    j = m;
                    l = n;
                    l--;
                }
                else {
                    DF[j][l] = 0;
                    l--;
                }
            }
        }
 
        // Loop for traversal
        for (int i = 1; i < N; i++) {
            int l = i;
            for (int j = N - 1; j >= i; j--) {
 
                // Condition when
                // continuous '1' is found
                if (ch[l][j] == '1') {
 
                    // Variables initialized
                    int m = l, n = j, count = 0;
 
                    // While loop for
                    // counting length of
                    // continuous '1'
                    while (n >= i) {
                        if (ch[m][n] == '1') {
                            count++;
                            m++;
                            n--;
                        }
                        else {
                            break;
                        }
                    }
                    n++;
                    m--;
 
                    // Initializing values
                    // in matrix
                    for (int p = l; p <= m; p++) {
                        DF[p][j] = count;
                        j--;
                    }
                    l = m + 1;
                    j = n;
                }
                else {
                    DF[l][j] = 0;
                    l++;
                }
            }
        }
    }
 
    // Method for creating a matrix of
    // maximum length for each index
    private static void maxSol()
    {
 
        // Solution matrix
        sol = new int[N][N];
        long max = Long.MIN_VALUE;
 
        // loop for traversing
        for (int i = 0; i < N; i++) {
 
            // Creating a StringBuilder
            // for output
            StringBuilder str = new StringBuilder("");
 
            // Loop for initializing
            // solution matrix by finding
            // maximum length for each index
            // in each direction
            for (int j = 0; j < N; j++) {
                if (H[i][j] >= V[i][j]
                    && H[i][j] >= DB[i][j]
                    && H[i][j] >= DF[i][j])
                    sol[i][j] = H[i][j];
                else if (V[i][j] >= H[i][j]
                         && V[i][j] >= DB[i][j]
                         && V[i][j] >= DF[i][j])
                    sol[i][j] = V[i][j];
                else if (DB[i][j] >= H[i][j]
                         && DB[i][j] >= V[i][j]
                         && DB[i][j] >= DF[i][j])
                    sol[i][j] = DB[i][j];
                else
                    sol[i][j] = DF[i][j];
 
                max = sol[i][j] > max ? sol[i][j] : max;
                str.append(sol[i][j]);
                str.append(" ");
            }
        }
 
        // Printing maximum length path
        System.out.println(max);
    }
}


Python3




# Python code to implement the approach
 
# Input value of N
N = 3
 
# Input matrix
ch = [ ['0', '1', '1'], ['0', '0', '0'], ['1', '1', '1'] ]
 
# Declaration of Matrices for storing
# length of the path in each direction
# for each index of the input matrix
H = [[0 for i in range(N)] for j in range(N)]
V = [[0 for i in range(N)] for j in range(N)]
DB = [[0 for i in range(N)] for j in range(N)]
DF = [[0 for i in range(N)] for j in range(N)]
sol = [[0 for i in range(N)] for j in range(N)]
 
# Method for traversing in
# horizontal direction
def horizontal():
     
    # Loop for traversing
    # horizontally
    for i in range(N):
        for j in range(N):
             
            # Condition when '1'
            # is found
            if ch[i][j] == '1':
                 
                # Initialized variables
                # to count the length
                k, count = j, 0
                 
                # While continuous '1'
                # is found
                while k < N and ch[i][k] == '1':
                    count += 1
                    k += 1
                k -= 1
                for l in range(j, k+1):
                    H[i][l] = count
                j = k
            else:
                H[i][j] = 0
 
# Method for vertical traversal
def vertical():
     
    # Loop for traversing vertically
    for i in range(N):
        for j in range(N):
             
            # Condition when '1'
            # is found
            if ch[j][i] == '1':
                 
                # Initialized variables
                # for count length of
                # continuous '1'
                k, count = j, 0
                 
                # Loop while continuous
                # '1' is found
                while k < N and ch[k][i] == '1':
                    count += 1
                    k += 1
                k -= 1
                 
                # Initializing length
                # in matrix
                for l in range(j, k+1):
                    V[l][i] = count
                j = k
            else:
                V[j][i] = 0
 
# Loop for traversing diagonally
# in backward direction
def diagonalBackward():
     
    # Loop for traversing in backward
    # direction diagonally
    for i in range(N):
        l = -1
        for j in range(i, N):
            l += 1
             
            # Condition when continuous
            # '1' is found
            if ch[l][j] == '1':
                 
                # Initialized variables
                # to count length of
                # continuous '1'
                m, n, count = l, j, 0
                 
                # While loop till
                # continuous '1' is found
                while n < N and ch[m][n] == '1':
                    count += 1
                    m += 1
                    n += 1
                m -= 1
                n -= 1
                 
                # Initializing
                # values in matrix
                for p in range(j, n+1):
                    DB[l][p] = count
                    l += 1
                l -= 1
                j = n
            else:
                DB[l][j] = 0
                 
        # Loop for traversing
        for i in range(1, N):
            l = i - 1
            for j in range(N - i):
                l += 1
                 
                # Condition when continuous
                # '1' is found
                if ch[l][j] == '1':
                     
                    # Variables for
                    # counting length of
                    # continuous '1'
                    m, n, count = l, j, 0
                     
                    # While loop for
                    # finding length of
                    # continuous '1'
                    while n < N - i and ch[m][n] == '1':
                        count += 1
                        m += 1
                        n += 1
                    m -= 1
                    n -= 1
                     
                    # Initializing length
                    # in matrix
                    for p in range(j, n+1):
                        DB[l][p] = count
                        l += 1
                    l -= 1
                    j = n
                else:
                    DB[l][j] = 0
 
# Loop for traversing diagonally in
# forward direction
def diagonalForward():
     
    # Loop for traversal
    for i in range(N):
        l = i
        for j in range(i+1):
             
            # Condition when '1'
            # is found
            if ch[j][l] == '1':
                 
                # Variables initialized
                # to count length of
                # continuous '1'
                m, n, count = j, l, 0
                 
                # While loop for
                # finding the length of
                # continuous '1'
                while m <= i and n >= 0 and ch[m][n] == '1':
                    count += 1
                    m += 1
                    n -= 1
                m -= 1
                n += 1
                 
                # initializing values
                # in matrix
                for p in range(j, m+1):
                    DF[p][l] = count
                    l -= 1
                j = m
                l = n
                l -= 1
            else:
                DF[j][l] = 0
                l -= 1
                 
    # Loop for traversal
    for i in range(1, N):
        l = i
        for j in range(N-1, i-1, -1):
             
            # Condition when
            # continuous '1' is found
            if ch[l][j] == '1':
                 
                # Variables initialized
                m, n, count = l, j, 0
                 
                # While loop for
                # counting length of
                # continuous '1'
                while m <= N-1 and n >= i and ch[m][n] == '1':
                    count += 1
                    m += 1
                    n -= 1
                m -= 1
                n += 1
                 
                # Initializing values
                # in matrix
                for p in range(l, m+1):
                    DF[p][j] = count
                    j -= 1
                l = m + 1
                j = n
            else:
                DF[l][j] = 0
                l += 1
 
# Method for creating a matrix of
# maximum length for each index
def maxSol():
     
    # Solution matrix
    sol = [[0 for j in range(N)] for i in range(N)]
    max_val = float('-inf')
     
    # loop for traversing
    for i in range(N):
         
        # Loop for initializing
        # solution matrix by finding
        # maximum length for each index
        # in each direction
        for j in range(N):
            if H[i][j] >= V[i][j] and H[i][j] >= DB[i][j] and H[i][j] >= DF[i][j]:
                sol[i][j] = H[i][j]
            elif V[i][j] >= H[i][j] and V[i][j] >= DB[i][j] and V[i][j] >= DF[i][j]:
                sol[i][j] = V[i][j]
            elif DB[i][j] >= H[i][j] and DB[i][j] >= V[i][j] and DB[i][j] >= DF[i][j]:
                sol[i][j] = DB[i][j]
            else:
                sol[i][j] = DF[i][j]
            max_val = max(max_val, sol[i][j])
             
    # Printing maximum length path   
    print(max_val)
 
# Function which is called in the
# driver function
def solution():
     
    # Function call for horizontal
    # traversals
    horizontal()
     
    # Function call for vertical
    # traversals
    vertical()
     
    # Function call for diagonal
    # traversals
    diagonalBackward()
    diagonalForward()
     
    # Function for printing matrix
    # of the longest path for each index
    # of the input matrix
    maxSol()
 
# Function call
solution()
 
# This Code is Contributed by Prasad Kandekar(prasad264)


C#




// C# code to implement the approach
using System;
 
public class GFG {
     
    // Input value of N
    const int N = 3;
 
    // Input matrix
    static char[, ] ch = { { '0', '1', '1' },
                           { '0', '0', '0' },
                           { '1', '1', '1' } };
 
    // Declaration of Matrices for storing
    // length of the path in each direction
    // for each index of the input matrix
    static int[, ] H = new int[N, N];
    static int[, ] V = new int[N, N];
    static int[, ] DB = new int[N, N];
    static int[, ] DF = new int[N, N];
    static int[, ] sol = new int[N, N];
 
    // Method for traversing in
    // horizontal direction
    static void horizontal()
    {
         
        // Loop for traversing
        // horizontally
        for (int i = 0; i < N; i++) {
            for (int j = 0; j < N; j++) {
                 
                // Condition when '1'
                // is found
                if (ch[i, j] == '1') {
                     
                    // Initialized variables
                    // to count the length
                    int k = j, count = 0;
                     
                    // While continuous '1'
                    // is found
                    while (k < N) {
                        if (ch[i, k] == '1') {
                            count++;
                            k++;
                        }
                        else {
                            break;
                        }
                    }
                    k--;
                    for (int l = j; l <= k; l++)
                        H[i, l] = count;
                    j = k;
                }
                else {
                    H[i, j] = 0;
                }
            }
        }
    }
 
    // Method for vertical traversal
    static void vertical()
    {
         
        // Loop for traversing vertically
        for (int i = 0; i < N; i++) {
            for (int j = 0; j < N; j++) {
                 
                 
                // Condition when '1'
                // is found
                if (ch[j, i] == '1') {
                     
                    // Initialized variables
                    // for count length of
                    // continuous '1'
                    int k = j, count = 0;
                     
                    // Loop while continuous
                    // '1' is found
                    while (k < N) {
                        if (ch[k, i] == '1') {
                            count++;
                            k++;
                        }
                        else {
                            break;
                        }
                    }
                    k--;
                     
                    // Initializing length
                    // in matrix
                    for (int l = j; l <= k; l++)
                        V[l, i] = count;
                    j = k;
                }
                else {
                    V[j, i] = 0;
                }
            }
        }
    }
 
    static void diagonalBackward()
    {
        // Loop for traversing in backward
        // direction diagonally
        for (int i = 0; i < N; i++) {
            int l = -1;
            for (int j = i; j < N; j++) {
                l++;
 
                // Condition when continuous
                // '1' is found
                if (ch[l, j] == '1') {
                     
                    // Initialized variables
                    // to count length of
                    // continuous '1'
                    int m = l, n = j, count = 0;
 
                    // While loop till
                    // continuous '1' is found
                    while (n < N) {
                        if (ch[m, n] == '1') {
                            count++;
                            m++;
                            n++;
                        }
                        else {
                            break;
                        }
                    }
                    m--;
                    n--;
 
                    // Initializing
                    // values in matrix
                    for (int p = j; p <= n; p++) {
                        DB[l, p] = count;
                        l++;
                    }
                    l--;
                    j = n;
                }
                else {
                    DB[l, j] = 0;
                }
            }
        }
 
        // Loop for traversing
        for (int i = 1; i < N; i++) {
            int l = i - 1;
            for (int j = 0; j < (N - i); j++) {
                l++;
 
                // Condition when continuous
                // '1' is found
                if (ch[l, j] == '1') {
                     
                    // Variables for counting length of
                    // continuous '1'
                    int m = l, n = j, count = 0;
 
                    // While loop for finding length of
                    // continuous '1'
                    while (n < (N - i)) {
                        if (ch[m, n] == '1') {
                            count++;
                            m++;
                            n++;
                        }
                        else {
                            break;
                        }
                    }
                    m--;
                    n--;
 
                    // Initializing length
                    // in matrix
                    for (int p = j; p <= n; p++) {
                        DB[l, p] = count;
                        l++;
                    }
                    l--;
                    j = n;
                }
                else {
                    DB[l, j] = 0;
                }
            }
        }
    }
 
    // Loop for traversing diagonally in
    // forward direction
    static void diagonalForward()
    {
         
        // Loop for traversal
        for (int i = 0; i < N; i++) {
            int l = i;
            for (int j = 0; j <= i; j++) {
                 
                // Condition when '1'
                // is found
                if (ch[j, l] == '1') {
                     
                    // Variables initialized
                    // to count length of
                    // continuous '1'
                    int m = j, n = l, count = 0;
                     
                    // While loop for
                    // finding the length of
                    // continuous '1'
                    while (m <= i) {
                        if (ch[m, n] == '1') {
                            count++;
                            m++;
                            n--;
                        }
                        else {
                            break;
                        }
                    }
                    m--;
                    n++;
                     
                    // initializing values
                    // in matrix
                    for (int p = j; p <= m; p++) {
                        DF[p, l] = count;
                        l--;
                    }
                    j = m;
                    l = n;
                    l--;
                }
                else {
                    DF[j, l] = 0;
                    l--;
                }
            }
        }
         
        // Loop for traversal
        for (int i = 1; i < N; i++) {
            int l = i;
            for (int j = N - 1; j >= i; j--) {
                 
                // Condition when
                // continuous '1' is found
                if (ch[l, j] == '1') {
                     
                    // Variables initialized
                    int m = l, n = j, count = 0;
                     
                    // While loop for
                    // counting length of
                    // continuous '1'
                    while (n >= i) {
                        if (ch[m, n] == '1') {
                            count++;
                            m++;
                            n--;
                        }
                        else {
                            break;
                        }
                    }
                    n++;
                    m--;
                     
                    // Initializing values
                    // in matrix
                    for (int p = l; p <= m; p++) {
                        DF[p, j] = count;
                        j--;
                    }
                    l = m + 1;
                    j = n;
                }
                else {
                    DF[l, j] = 0;
                    l++;
                }
            }
        }
    }
 
    // Method for creating a matrix of
    // maximum length for each index
    static void maxSol()
    {
 
        // Solution matrix
        Array.Clear(sol, 0, sol.Length);
        int max_ = int.MinValue;
 
        // loop for traversing
        for (int i = 0; i < N; i++) {
             
            // Loop for initializing
            // solution matrix by finding
            // maximum length for each index
            // in each direction
            for (int j = 0; j < N; j++) {
                if (H[i, j] >= V[i, j]
                    && H[i, j] >= DB[i, j]
                    && H[i, j] >= DF[i, j])
                    sol[i, j] = H[i, j];
                else if (V[i, j] >= H[i, j]
                         && V[i, j] >= DB[i, j]
                         && V[i, j] >= DF[i, j])
                    sol[i, j] = V[i, j];
                else if (DB[i, j] >= H[i, j]
                         && DB[i, j] >= V[i, j]
                         && DB[i, j] >= DF[i, j])
                    sol[i, j] = DB[i, j];
                else
                    sol[i, j] = DF[i, j];
                max_ = Math.Max(max_, sol[i, j]);
            }
        }
 
        // Printing maximum length path
        Console.WriteLine(max_);
    }
 
    // Function which is called in the
    // driver function
    static void solution()
    {
        // Initialization of matrices for
        // storing the longest path in
        // each index
        for (int i = 0; i < N; i++) {
            for (int j = 0; j < N; j++) {
                H[i, j] = 0;
                V[i, j] = 0;
                DB[i, j] = 0;
                DF[i, j] = 0;
            }
        }
        // Function call for horizontal
        // traversals
        horizontal();
 
        // Function call for vertical
        // traversals
        vertical();
 
        // Function call for diagonal
        // traversals
        diagonalBackward();
 
        diagonalForward();
 
        // Function for printing matrix
        // of the longest path for each index
        // of the input matrix
        maxSol();
    }
 
    // Driver Code
    static public void Main(string[] args)
    {
        // Function call
        solution();
    }
}
// This Code is Contributed by Prasad Kandekar(prasad264)


Javascript




// Javascript code to implement the approach
// Input value of N
let N = 3;
 
// Input matrix
let ch = [ [ '0', '1', '1' ], [ '0', '0', '0' ], [ '1', '1', '1' ] ];
 
// Declaration of Matrices for storing
// length of the path in each direction
// for each index of the input matrix
let  H, V, DB, DF, sol;
 
// Method for traversing in
// horizontal direction
function horizontal()
{
 
    // Loop for traversing
    // horizontally
    for (let i = 0; i < N; i++) {
 
        for (let j = 0; j < N; j++) {
 
            // Condition when '1'
            // is found
            if (ch[i][j] == '1') {
 
                // Initialized variables
                // to count the length
                let k = j, count = 0;
 
                // While continuous '1'
                // is found
                while (k < N) {
 
                    if (ch[i][k] == '1') {
                        count++;
                        k++;
                    }
                    else {
 
                        break;
                    }
                }
                k--;
                for (let l = j; l <= k; l++)
                    H[i][l] = count;
                j = k;
            }
            else {
                H[i][j] = 0;
            }
        }
    }
}
 
// Method for vertical traversal
function vertical()
{
 
    // Loop for traversing vertically
    for (let i = 0; i < N; i++) {
        for (let j = 0; j < N; j++) {
 
            // Condition when '1'
            // is found
            if (ch[j][i] == '1') {
 
                // Initialized variables
                // for count length of
                // continuous '1'
                let k = j, count = 0;
 
                // Loop while continuous
                // '1' is found
                while (k < N) {
                    if (ch[k][i] == '1') {
                        count++;
                        k++;
                    }
                    else {
 
                        break;
                    }
                }
                k--;
 
                // Initializing length
                // in matrix
                for (let l = j; l <= k; l++)
                    V[l][i] = count;
                j = k;
            }
            else {
                V[j][i] = 0;
            }
        }
    }
}
 
// Loop for traversing diagonally
// in backward direction
function diagonalBackward()
{
 
    // Loop for traversing in backward
    // direction diagonally
    for (let i = 0; i < N; i++) {
        let l = -1;
        for (let j = i; j < N; j++) {
            l++;
 
            // Condition when continuous
            // '1' is found
            if (ch[l][j] == '1') {
 
                // Initialized variables
                // to count length of
                // continuous '1'
                let m = l, n = j, count = 0;
 
                // While loop till
                // continuous '1' is found
                while (n < N) {
                    if (ch[m][n] == '1') {
                        count++;
                        m++;
                        n++;
                    }
                    else {
                        break;
                    }
                }
                m--;
                n--;
 
                // Initializing
                // values in matrix
                for (let p = j; p <= n; p++) {
                    DB[l][p] = count;
                    l++;
                }
                l--;
                j = n;
            }
            else {
                DB[l][j] = 0;
            }
        }
    }
 
    // Loop for traversing
    for (let i = 1; i < N; i++) {
        let l = i - 1;
        for (let j = 0; j < (N - i); j++) {
            l++;
 
            // Condition when continuous
            // '1' is found
            if (ch[l][j] == '1') {
 
                // Variables for
                // counting length of
                // continuous '1'
                let m = l, n = j, count = 0;
 
                // While loop for
                // finding length of
                // continuous '1'
                while (n < (N - i)) {
                    if (ch[m][n] == '1') {
                        count++;
                        m++;
                        n++;
                    }
                    else {
                        break;
                    }
                }
                m--;
                n--;
 
                // Initializing length
                // in matrix
                for (let p = j; p <= n; p++) {
 
                    DB[l][p] = count;
                    l++;
                }
                l--;
                j = n;
            }
            else {
                DB[l][j] = 0;
            }
        }
    }
}
 
// Loop for traversing diagonally in
// forward direction
function diagonalForward()
{
 
    // Loop for traversal
    for (let i = 0; i < N; i++) {
        let l = i;
        for (let j = 0; j <= i; j++) {
 
            // Condition when '1'
            // is found
            if (ch[j][l] == '1') {
 
                // Variables initialized
                // to count length of
                // continuous '1'
                let m = j, n = l, count = 0;
 
                // While loop for
                // finding the length of
                // continuous '1'
                while (m <= i) {
                    if (ch[m][n] == '1') {
                        count++;
                        m++;
                        n--;
                    }
                    else {
                        break;
                    }
                }
                m--;
                n++;
 
                // initializing values
                // in matrix
                for (let p = j; p <= m; p++) {
                    DF[p][l] = count;
                    l--;
                }
                j = m;
                l = n;
                l--;
            }
            else {
                DF[j][l] = 0;
                l--;
            }
        }
    }
 
    // Loop for traversal
    for (let i = 1; i < N; i++) {
        let l = i;
        for (let j = N - 1; j >= i; j--) {
 
            // Condition when
            // continuous '1' is found
            if (ch[l][j] == '1') {
 
                // Variables initialized
                let m = l, n = j, count = 0;
 
                // While loop for
                // counting length of
                // continuous '1'
                while (n >= i) {
                    if (ch[m][n] == '1') {
                        count++;
                        m++;
                        n--;
                    }
                    else {
                        break;
                    }
                }
                n++;
                m--;
 
                // Initializing values
                // in matrix
                for (let p = l; p <= m; p++) {
                    DF[p][j] = count;
                    j--;
                }
                l = m + 1;
                j = n;
            }
            else {
                DF[l][j] = 0;
                l++;
            }
        }
    }
}
 
// Method for creating a matrix of
// maximum length for each index
function maxSol()
{
 
    // Solution matrix
    sol = new Array(N);
    for(let i=0; i<N; i++)
        sol[i]=new Array(N).fill(0);
    let max = Number.MIN_SAFE_INTEGER;
 
    // loop for traversing
    for (let i = 0; i < N; i++) {
 
        // Creating a StringBuilder
        // for output
        let str = "";
 
        // Loop for initializing
        // solution matrix by finding
        // maximum length for each index
        // in each direction
        for (let j = 0; j < N; j++) {
            if (H[i][j] >= V[i][j]
                && H[i][j] >= DB[i][j]
                && H[i][j] >= DF[i][j])
                sol[i][j] = H[i][j];
            else if (V[i][j] >= H[i][j]
                     && V[i][j] >= DB[i][j]
                     && V[i][j] >= DF[i][j])
                sol[i][j] = V[i][j];
            else if (DB[i][j] >= H[i][j]
                     && DB[i][j] >= V[i][j]
                     && DB[i][j] >= DF[i][j])
                sol[i][j] = DB[i][j];
            else
                sol[i][j] = DF[i][j];
 
            max = sol[i][j] > max ? sol[i][j] : max;
            str+=sol[i][j];
            str+" ";
        }
    }
 
    // Printing maximum length path
    console.log(max);
}
 
// Function which is called in the
// driver function
function solution()
{
    // Initialization of matrices for
    // storing the longest path in
    // each index
    H = new Array(N);
    for(let i=0; i<N; i++)
        H[i]=new Array(N).fill(0);
    V = new Array(N);
    for(let i=0; i<N; i++)
        V[i]=new Array(N).fill(0);
    DB = new Array(N);
    for(let i=0; i<N; i++)
        DB[i]=new Array(N).fill(0);
    DF = new Array(N);
    for(let i=0; i<N; i++)
        DF[i]=new Array(N).fill(0);
 
    // Function call for horizontal
    // traversals
    horizontal();
 
    // Function call for vertical
    // traversals
    vertical();
 
    // Function call for diagonal
    // traversals
    diagonalBackward();
 
    diagonalForward();
 
    // Function for printing matrix
    // of the longest path for each index
    // of the input matrix
    maxSol();
}
 
// Function call
solution();


Output

3

Time Complexity: O(N*M)
Auxiliary Space: O(N*M)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
15 Mar, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments