Friday, November 15, 2024
Google search engine
HomeData Modelling & AIFind the element that appears once in a sorted array

Find the element that appears once in a sorted array

Given a sorted array in which all elements appear twice (one after one) and one element appears only once. Find that element in O(log n) complexity.

Example: 

Input:   arr[] = {1, 1, 3, 3, 4, 5, 5, 7, 7, 8, 8}
Output: 4
Input: arr[] = {1, 1, 3, 3, 4, 4, 5, 5, 7, 7, 8}
Output: 8

A Simple Solution is to traverse the array from left to right. Since the array is sorted, we can easily figure out the required element.

Below is the implementation of the above approach.

C++




// C++ program to find the element that
// appears only once
#include <bits/stdc++.h>
using namespace std;
 
// A Linear Search based function to find
// the element that appears only once
void search(int arr[], int n)
{
    int ans = -1;
    for (int i = 0; i < n; i += 2) {
        if (arr[i] != arr[i + 1]) {
            ans = arr[i];
            break;
        }
    }
   
    if (arr[n - 2] != arr[n - 1])
            ans = arr[n-1];
   
    // ans = -1 if no such element is present.
    cout << "The required element is " << ans << "\n";
}
 
// Driver code
int main()
{
    int arr[] = { 1, 1, 2, 4, 4, 5, 5, 6, 6 };
    int len = sizeof(arr) / sizeof(arr[0]);
 
    search(arr, len);
 
    return 0;
}
 
// This code is contributed by yashbeersingh42


Java




// Java program to find the element that
// appears only once
import java.io.*;
 
class GFG {
    // A Linear Search based function to find
    // the element that appears only once
    static void search(int arr[], int n)
    {
        int ans = -1;
        for (int i = 0; i < n-1; i += 2) {
            if (arr[i] != arr[i + 1]) {
                ans = arr[i];
                break;
            }
        }
       
        if (arr[n - 2] != arr[n - 1])
            ans = arr[n-1];
      
        // ans = -1 if no such element is present.
        System.out.println("The required element is "
                           + ans);
    }
    public static void main(String[] args)
    {
        int arr[] = { 1, 1, 2, 4, 4, 5, 5, 6, 6 };
        int len = arr.length;
 
        search(arr, len);
    }
}


Python3




# Python3 program to find the element that
# appears only once
 
# A Linear Search based function to find
# the element that appears only once
 
 
def search(arr, n):
 
    ans = -1
    for i in range(0, n, 2):
        if (arr[i] != arr[i + 1]):
            ans = arr[i]
            break
    if(arr[n-2] != arr[n-1]):
        ans = arr[n-1]
 
    # ans = -1 if no such element is present.
    print("The required element is", ans)
 
 
# Driver code
arr = [1, 1, 2, 4, 4, 5, 5, 6, 6]
Len = len(arr)
 
search(arr, Len)
 
# This code is contributed by divyesh072019


C#




// C# program to find the element that
// appears only once
using System;
 
class GFG {
    // A Linear Search based function to find
    // the element that appears only once
    static void search(int[] arr, int n)
    {
        int ans = -1;
        for (int i = 0; i < n; i += 2) {
            if (arr[i] != arr[i + 1]) {
                ans = arr[i];
                break;
            }
        }
 
        if (arr[n - 2] != arr[n - 1])
            ans = arr[n-1];
       
        // ans = -1 if no such element is present.
        Console.Write("The required element is "
                        + ans);
    }
    public static void Main(String[] args)
    {
        int[] arr = { 1, 1, 2, 4, 4, 5, 5, 6, 6 };
        int len = arr.Length;
 
        search(arr, len);
    }
}
 
// This code is contributed by shivanisinghss2110


Javascript




<script>
 
// JavaScript program to find the element that
// appears only once
 
// A Linear Search based function to find
// the element that appears only once
function search(arr, n)
{
    let ans = -1;
    for (let i = 0; i < n; i += 2) {
        if (arr[i] != arr[i + 1]) {
            ans = arr[i];
            break;
        }
    }
 
    if (arr[n - 2] != arr[n - 1])
            ans = arr[n-1];
 
    // ans = -1 if no such element is present.
    document.write("The required element is " + ans + "<br>");
}
 
// Driver code
    let arr = [ 1, 1, 2, 4, 4, 5, 5, 6, 6 ];
    let len = arr.length;
 
    search(arr, len);
 
     
// This code is contributed by Surbhi Tyagi
 
</script>


Output

The required element is 2










Time Complexity: O(n)
Auxiliary Space: O(1),  since no extra space has been taken.

Another Simple Solution is to use the properties of XOR (a ^ a = 0 & a ^ 0 = a). The idea is to find the XOR of the complete array. The XOR of the array is the required answer.

Below is the implementation of the above approach.

C++




// C++ program to find the element that
// appears only once
#include <bits/stdc++.h>
using namespace std;
 
// A XOR based function to find
// the element that appears only once
void search(int arr[], int n)
{
    int XOR = 0;
    for (int i = 0; i < n; i++) {
        XOR = XOR ^ arr[i];
    }
    cout << "The required element is " << XOR << "\n";
}
 
// Driver code
int main()
{
    int arr[] = { 1, 1, 2, 4, 4, 5, 5, 6, 6 };
    int len = sizeof(arr) / sizeof(arr[0]);
 
    search(arr, len);
 
    return 0;
}
 
// This code is contributed by yashbeersingh42


Java




// Java program to find the element that
// appears only once
import java.io.*;
 
class GFG {
    // A XOR based function to find
    // the element that appears only once
    static void search(int arr[], int n)
    {
        int XOR = 0;
        for (int i = 0; i < n; i++) {
            XOR = XOR ^ arr[i];
        }
        System.out.println("The required element is "
                           + XOR);
    }
    // Driver Code
    public static void main(String[] args)
    {
        int arr[] = { 1, 1, 2, 4, 4, 5, 5, 6, 6 };
        int len = arr.length;
 
        search(arr, len);
    }
}
 
// This code is contributed by yashbeersingh42


Python3




# Python3 program to find the element that
# appears only once
 
# A XOR based function to find
# the element that appears only once
def search(arr, n) :
 
    XOR = 0
    for i in range(n) :
        XOR = XOR ^ arr[i]
 
    print("The required element is", XOR)
 
# Driver code
arr = [ 1, 1, 2, 4, 4, 5, 5, 6, 6 ]
Len = len(arr)
 
search(arr, Len)
 
# This code is contributed by divyesh072019


C#




// C# program to find the element that
// appears only once
using System;
 
class GFG{
     
// A XOR based function to find
// the element that appears only once
static void search(int []arr, int n)
{
    int XOR = 0;
     
    for(int i = 0; i < n; i++)
    {
        XOR = XOR ^ arr[i];
    }
    Console.Write("The required element is " + XOR);
}
 
// Driver Code
public static void Main(String[] args)
{
    int []arr = { 1, 1, 2, 4, 4, 5, 5, 6, 6 };
    int len = arr.Length;
     
    search(arr, len);
}
}
 
// This code is contributed by shivanisinghss2110


Javascript




<script>
// JavaScript program to find the element that
// appears only once
 
// A XOR based function to find
// the element that appears only once
function search(arr, n)
{
    let XOR = 0;
    for (let i = 0; i < n; i++) {
        XOR = XOR ^ arr[i];
    }
    document.write("The required element is " + XOR + "<br>");
}
 
// Driver code
    let arr = [ 1, 1, 2, 4, 4, 5, 5, 6, 6 ];
    let len = arr.length;
 
    search(arr, len);
 
 
 
 
// This code is contributed by Surbhi Tyagi.
</script>


Output

The required element is 2










Time Complexity: O(n)
Auxiliary Space: O(1) 

An Efficient Solution can find the required element in O(Log n) time. The idea is to use Binary Search. Below is an observation on the input array. 
All elements before the required have the first occurrence at even index (0, 2, ..) and the next occurrence at odd index (1, 3, …). And all elements after the required elements have the first occurrence at an odd index and the next occurrence at an even index. 

  1. Find the middle index, say ‘mid’.
  2. If ‘mid’ is even, then compare arr[mid] and arr[mid + 1]. If both are the same, then the required element after ‘mid’ and else before mid.
  3. If ‘mid’ is odd, then compare arr[mid] and arr[mid – 1]. If both are the same, then the required element after ‘mid’ and else before mid.

Below is the implementation based on the above idea: 

C++




// C++ program to find the element that
// appears only once
#include <iostream>
using namespace std;
 
// A Binary Search based function to find
// the element that appears only once
void search(int arr[], int low, int high)
{
 
    // Base cases
    if (low > high)
        return;
 
    if (low == high) {
        cout << "The required element is " << arr[low];
        return;
    }
 
    // Find the middle point
    int mid = (low + high) / 2;
 
    // If mid is even and element next to mid is
    // same as mid, then output element lies on
    // right side, else on left side
    if (mid % 2 == 0) {
        if (arr[mid] == arr[mid + 1])
            search(arr, mid + 2, high);
        else
            search(arr, low, mid);
    }
 
    // If mid is odd
    else {
        if (arr[mid] == arr[mid - 1])
            search(arr, mid + 1, high);
        else
            search(arr, low, mid - 1);
    }
}
 
// Driver code
int main()
{
    int arr[] = { 1, 1, 2, 4, 4, 5, 5, 6, 6 };
    int len = sizeof(arr) / sizeof(arr[0]);
 
    search(arr, 0, len - 1);
 
    return 0;
}
 
// This code is contributed by ShubhamCoder


C




// C program to find the element that appears only once
#include <stdio.h>
 
// A Binary Search based function to find the element
// that appears only once
void search(int* arr, int low, int high)
{
    // Base cases
    if (low > high)
        return;
 
    if (low == high) {
        printf("The required element is %d ", arr[low]);
        return;
    }
 
    // Find the middle point
    int mid = (low + high) / 2;
 
    // If mid is even and element next to mid is
    // same as mid, then output element lies on
    // right side, else on left side
    if (mid % 2 == 0) {
        if (arr[mid] == arr[mid + 1])
            search(arr, mid + 2, high);
        else
            search(arr, low, mid);
    }
    else // If mid is odd
    {
        if (arr[mid] == arr[mid - 1])
            search(arr, mid + 1, high);
        else
            search(arr, low, mid - 1);
    }
}
 
// Driver code
int main()
{
    int arr[] = { 1, 1, 2, 4, 4, 5, 5, 6, 6 };
    int len = sizeof(arr) / sizeof(arr[0]);
    search(arr, 0, len - 1);
    return 0;
}


Java




// Java program to find the element that appears only once
 
public class Main {
    // A Binary Search based method to find the element
    // that appears only once
    public static void search(int[] arr, int low, int high)
    {
        if (low > high)
            return;
        if (low == high) {
            System.out.println("The required element is "
                               + arr[low]);
            return;
        }
 
        // Find the middle point
        int mid = (low + high) / 2;
 
        // If mid is even and element next to mid is
        // same as mid, then output element lies on
        // right side, else on left side
        if (mid % 2 == 0) {
            if (arr[mid] == arr[mid + 1])
                search(arr, mid + 2, high);
            else
                search(arr, low, mid);
        }
        // If mid is odd
        else if (mid % 2 == 1) {
            if (arr[mid] == arr[mid - 1])
                search(arr, mid + 1, high);
            else
                search(arr, low, mid - 1);
        }
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int[] arr = { 1, 1, 2, 4, 4, 5, 5, 6, 6 };
        search(arr, 0, arr.length - 1);
    }
}
// This code is contributed by Tanisha Mittal


Python




# A Binary search based function to find
# the element that appears only once
 
 
def search(arr, low, high):
 
    # Base cases
    if low > high:
        return None
 
    if low == high:
        return arr[low]
 
    # Find the middle point
    mid = low + (high - low)/2
 
    # If mid is even and element next to mid is
    # same as mid, then output element lies on
    # right side, else on left side
    if mid % 2 == 0:
 
        if arr[mid] == arr[mid+1]:
            return search(arr, mid+2, high)
        else:
            return search(arr, low, mid)
 
    else:
        # if mid is odd
        if arr[mid] == arr[mid-1]:
            return search(arr, mid+1, high)
        else:
            return search(arr, low, mid-1)
 
# Driver Code
# Test Array
arr = [1, 1, 2, 4, 4, 5, 5, 6, 6]
 
# Function call
result = search(arr, 0, len(arr)-1)
 
if result is not None:
    print "The required element is %d" % result
else:
    print "Invalid Array"


C#




// C# program to find the element
// that appears only once
using System;
 
class GFG {
 
    // A Binary Search based
    // method to find the element
    // that appears only once
    public static void search(int[] arr, int low, int high)
    {
 
        if (low > high)
            return;
        if (low == high) {
            Console.WriteLine("The required element is "
                              + arr[low]);
            return;
        }
 
        // Find the middle point
        int mid = (low + high) / 2;
 
        // If mid is even and element
        // next to mid is same as mid
        // then output element lies on
        // right side, else on left side
        if (mid % 2 == 0) {
            if (arr[mid] == arr[mid + 1])
                search(arr, mid + 2, high);
            else
                search(arr, low, mid);
        }
 
        // If mid is odd
        else if (mid % 2 == 1) {
            if (arr[mid] == arr[mid - 1])
                search(arr, mid + 1, high);
            else
                search(arr, low, mid - 1);
        }
    }
 
    // Driver Code
    public static void Main(String[] args)
    {
        int[] arr = { 1, 1, 2, 4, 4, 5, 5, 6, 6 };
        search(arr, 0, arr.Length - 1);
    }
}
 
// This code is contributed by Nitin Mittal.


Javascript




<script>
// Javascript implementation
 
// A Binary Search based function to find
// the element that appears only once
function search( arr, low, high)
{
  
    // Base cases
    if (low > high)
        return;
  
    if (low == high) {
        document.write("The required element is " + arr[low]);
        return;
    }
  
    // Find the middle point
    var mid = Math.floor((low + high) / 2);
  
    // If mid is even and element next to mid is
    // same as mid, then output element lies on
    // right side, else on left side
    if (mid % 2 == 0) {
        if (arr[mid] == arr[mid + 1])
            search(arr, mid + 2, high);
        else
            search(arr, low, mid);
    }
  
    // If mid is odd
    else {
        if (arr[mid] == arr[mid - 1])
            search(arr, mid + 1, high);
        else
            search(arr, low, mid - 1);
    }
}
  
// Driver Code
var arr = [1, 1, 2, 4, 4, 5, 5, 6, 6];
var len = arr.length;
 
search(arr, 0, len - 1)
 
// This is code is contributed
// by shubhamsingh10
</script>


PHP




<?php
// PHP program to find the element
// that appears only once
 
// A Binary Search based function
// to find the element that
// appears only once
function search($arr, $low, $high)
{
     
    // Base cases
    if ($low > $high)
        return;
 
    if ($low==$high)
    {
        echo("The required element is " );
        echo $arr[$low] ;
        return;
    }
 
    // Find the middle point
    $mid = ($low + $high) / 2;
 
    // If mid is even and element
    // next to mid is same as mid,
    // then output element lies on
    // right side, else on left side
    if ($mid % 2 == 0)
    {
        if ($arr[$mid] == $arr[$mid + 1])
            search($arr, $mid + 2, $high);
        else
            search($arr, $low, $mid);
    }
     
    // If mid is odd
    else
    {
        if ($arr[$mid] == $arr[$mid - 1])
            search($arr, $mid + 1, $high);
        else
            search($arr, $low, $mid - 1);
    }
}
 
    // Driver Code
    $arr = array(1, 1, 2, 4, 4, 5, 5, 6, 6);
    $len = sizeof($arr);
    search($arr, 0, $len - 1);
 
// This code is contributed by nitin mittal
?>


Output

The required element is 2










Time Complexity: O(Log n)
Auxiliary Space: O(1) 

Note: Other Solutions to the question are slight variations of the approaches discussed in this post.

Another Approach: An Efficient Solution can find the required element in O(Log n) time. The idea is to use Binary Search without recursion. All elements before the required have the first occurrence at even index (0, 2, ..and so on) and the next occurrence at odd index (1, 3, ..and so on). 

The approach will be as follows:

Find the middle index assuming mid using start pointer and end pointer. And check the mid element in the following cases

  • Case 1) If mid element is not equal to mid+1 element  and mid-1 element. This case returns the answer.
  • Case 2) When mid element is even and equal to mid+1 element this means number is not present in the left side of the array. In this case start pointer will change to mid+1.
  • Case 3) When mid element is odd and equal to mid-1 element this means number is not present in the left side of the array. In this case start pointer will change to mid+1.
  • Case 4) When mid element is odd and equal to mid+1 element this means number is not present in the right side of the array. In this case end pointer will change to mid-1.
  • Case 5) When mid element is even and equal to mid-1 element this means number is not present in the right side of the array. In this case end pointer will change to mid-1. 

Check for all case for possible values of mid till start<=end..

If all checks fail there is no such element.

This solution requires extra checks for edge cases.

  • Edge Case 1) If only one element is present in the array. Therefore return the only element of the array.
  • Edge Case 2) If last element of the array is the required element. Therefore return the last element of the array.
  • Edge Case 3) If first element of the array is the required element. Therefore return the first element of the array.

Below is the implementation based on the above idea: 

C++




#include <iostream>
using namespace std;
int search(int nums[], int n)
{
   
    // A Binary Search based method to find the element
    // that appears only once
    int start = 0, end = n - 1, mid;
 
    // For Edge Cases
    if (n == 1) // If only one element is in the array
        return nums[0];
 
    if (nums[start]
        != nums[start + 1]) // If the first element
                            // is the element that
                            // appears only once
        return nums[start];
 
    if (nums[end]
        != nums[end - 1]) // If Last element is the element
                          // that appears only once
        return nums[end];
 
    // Binary Search
    while (start <= end)
    {
        mid = start + (end - start) / 2;
       
        // CASE 1
        if (nums[mid] != nums[mid - 1]
            && nums[mid] != nums[mid + 1])
            return nums[mid];
       
        // CASE 2 and CASE 3
        else if ((nums[mid] == nums[mid + 1]
                  && mid % 2 == 0)
                 || (nums[mid] == nums[mid - 1]
                     && mid % 2 != 0))
            start = mid + 1;
       
        // CASE 4 and CASE 5
        else
            end = mid - 1;
    }
   
    // If no such element found
    return -1;
}
 
// Driver code
int main()
{
    int arr[] = { 1, 1, 2, 4, 4, 5, 5, 6, 6 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int element = search(arr, n);
 
    if (element != -1)
        cout << "The required element is " << element;
    else
        cout << "There is no such element";
}
 
// This code is contributed by umadevi9616


Java




class GFG {
    public static int search(int[] nums)
    {
        // A Binary Search based method to find the element
        // that appears only once
        int start = 0, end = nums.length - 1, mid;
 
        // For Edge Cases
        if (nums.length
            == 1) // If only one element is in the array
            return nums[0];
 
        if (nums[start]
            != nums[start + 1]) // If the first element
                                // is the element that
                                // appears only once
            return nums[start];
 
        if (nums[end]
            != nums[end
                    - 1]) // If Last element is the element
                          // that appears only once
            return nums[end];
 
        // Binary Search
        while (start <= end) {
            mid = start + (end - start) / 2;
            // CASE 1
            if (nums[mid] != nums[mid - 1]
                && nums[mid] != nums[mid + 1])
                return nums[mid];
            // CASE 2 and CASE 3
            else if ((nums[mid] == nums[mid + 1]
                      && mid % 2 == 0)
                     || (nums[mid] == nums[mid - 1]
                         && mid % 2 != 0))
                start = mid + 1;
            // CASE 4 and CASE 5
            else
                end = mid - 1;
        }
        // If no such element found
        return -1;
    }
    public static void main(String[] args)
    {
        int[] arr = { 1, 1, 2, 4, 4, 5, 5, 6, 6 };
 
        int element = search(arr);
 
        if (element != -1)
            System.out.println("The required element is "
                               + element);
        else
            System.out.println("There is no such element");
    }
}
 
// Code Contributed by Arnav Sharma


Python3




def search(nums):
    # A Binary Search based method to find the element
    # that appears only once
    start = 0;
    end = len(nums)-1;
    mid = 0;
 
    # For Edge Cases
    if (len(nums) == 1): # If only one element is in the array
        return nums[0];
 
    if (nums[start] != nums[start + 1]): # If the first element
                                        # is the element that
                                        # appears only once
        return nums[start];
 
    if (nums[end] != nums[end - 1]): # If Last element is the element
                                    # that appears only once
        return nums[end];
 
    # Binary Search
    while (start <= end):
        mid = start + (end - start) // 2;
         
        # CASE 1
        if (nums[mid] != nums[mid - 1] and nums[mid] != nums[mid + 1]):
           
            return nums[mid];
        # CASE 2 and CASE 3
        elif((nums[mid] == nums[mid + 1] and mid % 2 == 0) or (nums[mid] == nums[mid - 1] and mid % 2 != 0)):
            start = mid + 1;
             
        # CASE 4 and CASE 5
        else:
            end = mid - 1;
     
    # If no such element found
    return -1;
 
# Driver code
if __name__ == '__main__':
    arr = [ 1, 1, 2, 4, 4, 5, 5, 6, 6 ];
 
    element = search(arr);
 
    if (element != -1):
        print("The required element is " , element);
    else:
        print("There is no such element");
 
# This code is contributed by umadevi9616


C#




using System;
public class GFG {
    public static int search(int[] nums)
    {
       
        // A Binary Search based method to find the element
        // that appears only once
        int start = 0, end = nums.Length - 1, mid;
 
        // For Edge Cases
        if (nums.Length
            == 1) // If only one element is in the array
            return nums[0];
 
        if (nums[start]
            != nums[start + 1]) // If the first element
                                // is the element that
                                // appears only once
            return nums[start];
 
        if (nums[end]
            != nums[end
                    - 1]) // If Last element is the element
                          // that appears only once
            return nums[end];
 
        // Binary Search
        while (start <= end)
        {
            mid = start + (end - start) / 2;
           
            // CASE 1
            if (nums[mid] != nums[mid - 1]
                && nums[mid] != nums[mid + 1])
                return nums[mid];
           
            // CASE 2 and CASE 3
            else if ((nums[mid] == nums[mid + 1]
                      && mid % 2 == 0)
                     || (nums[mid] == nums[mid - 1]
                         && mid % 2 != 0))
                start = mid + 1;
           
            // CASE 4 and CASE 5
            else
                end = mid - 1;
        }
       
        // If no such element found
        return -1;
    }
    public static void Main(String[] args)
    {
        int[] arr = { 1, 1, 2, 4, 4, 5, 5, 6, 6 };
 
        int element = search(arr);
 
        if (element != -1)
            Console.WriteLine("The required element is "
                               + element);
        else
            Console.WriteLine("There is no such element");
    }
}
 
// This code is contributed by gauravrajput1


Javascript




<script>
   function search(nums)
    {
     
        // A Binary Search based method to find the element
        // that appears only once
        var start = 0, end = nums.length - 1, mid;
 
        // For Edge Cases
        if (nums.length
            == 1) // If only one element is in the array
            return nums[0];
 
        if (nums[start]
            != nums[start + 1]) // If the first element
                                // is the element that
                                // appears only once
            return nums[start];
 
        if (nums[end]
            != nums[end
                    - 1]) // If Last element is the element
                          // that appears only once
            return nums[end];
 
        // Binary Search
        while (start <= end)
        {
            mid = start + (end - start) / 2;
             
            // CASE 1
            if (nums[mid] != nums[mid - 1]
                && nums[mid] != nums[mid + 1])
                return nums[mid];
                 
            // CASE 2 and CASE 3
            else if ((nums[mid] == nums[mid + 1]
                      && mid % 2 == 0)
                     || (nums[mid] == nums[mid - 1]
                         && mid % 2 != 0))
                start = mid + 1;
                 
            // CASE 4 and CASE 5
            else
                end = mid - 1;
        }
         
        // If no such element found
        return -1;
    }
     
        var arr = [ 1, 1, 2, 4, 4, 5, 5, 6, 6 ];
        var element = search(arr);
        if (element = 2)
            document.write("The required element is "
                               + element);
        else
            document.write("There is no such element");
 
// This code is contributed by shivanisinghss2110
</script>


Output

The required element is 2










This solution is contributed by Arnav Sharma. 

Time Complexity: O(logn)
Auxiliary Space: O(1)

 This article is contributed by Mehboob Elahi. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

Another Approach:-

We can simply use hashmap to store the frequency of the elements and after that we can just traverse the hashmap to find the element with frequency 1.

Implementation:

C++




// C++ program to find the element that
// appears only once
#include <bits/stdc++.h>
using namespace std;
 
// function to find element using hashmap
void search(int arr[], int n)
{
    // taking hashmap to store frequency
    unordered_map<int, int> mm;
 
    // iterating over array
    for (int i = 0; i < n; i++) {
        // storing frequency
        mm[arr[i]]++;
    }
 
    // iterating over map
    for (auto x : mm) {
        // if element found
        if (x.second == 1) {
            // printing element
            cout << x.first << endl;
            break;
        }
    }
}
 
// Driver code
int main()
{
    int arr[] = { 1, 1, 2, 4, 4, 5, 5, 6, 6 };
    int len = sizeof(arr) / sizeof(arr[0]);
 
    search(arr, len);
 
    return 0;
}
 
// This code is contributed by shubhamrajput6156


Java




// Java program to find the element that
// appears only once
import java.util.*;
class GFG {
 
  // function to find element using hashmap
  static void search(int arr[], int n)
  {
    // taking hashmap to store frequency
    HashMap<Integer,Integer> mm=new HashMap<Integer,Integer>();
 
    // iterating over array
    for(int i = 0; i < arr.length; i++) {
      if (mm.containsKey(arr[i])) {
        int count = mm.get(arr[i]) +1;
        mm.put(arr[i], count);
      } else{
        mm.put(arr[i],1);
      }
    }
 
    // iterating over map
    for(Map.Entry<Integer,Integer> x : mm.entrySet()){   
      int c= x.getValue();
      // if element found
      if(c == 1){
        // printing element
        System.out.println(x.getKey());
        break;
      }   
    }
  }
 
  // Driver Code
  public static void main(String[] args) {
    int arr[] = { 1, 1, 2, 4, 4, 5, 5, 6, 6 };
    int len = arr.length;
 
    // function calling
    search(arr, len);
 
    return ;
  }
}
 
// This code is contributed by bhardwajji


Python3




# Python3 program to find the element that
# appears only once
 
# function to find element using dictionary
 
 
def search(arr):
    # taking dictionary to store frequency
    freq = {}
 
    # iterating over array
    for i in arr:
        # storing frequency
        if i in freq:
            freq[i] += 1
        else:
            freq[i] = 1
 
    # iterating over dictionary
    for key, value in freq.items():
        # if element found
        if value == 1:
            # printing element
            print(key)
            break
 
 
# Driver code
if __name__ == '__main__':
    arr = [1, 1, 2, 4, 4, 5, 5, 6, 6]
 
    search(arr)


C#




using System;
using System.Collections.Generic;
 
class GFG {
 
  // function to find element using Dictionary
  static void Search(int[] arr, int n) {
    // taking Dictionary to store frequency
    Dictionary<int,int> mm = new Dictionary<int,int>();
 
    // iterating over array
    for(int i = 0; i < arr.Length; i++) {
      if (mm.ContainsKey(arr[i])) {
        int count = mm[arr[i]] + 1;
        mm[arr[i]] = count;
      } else{
        mm.Add(arr[i], 1);
      }
    }
 
    // iterating over Dictionary
    foreach(KeyValuePair<int,int> x in mm) {   
      int c = x.Value;
      // if element found
      if(c == 1){
        // printing element
        Console.WriteLine(x.Key);
        break;
      }   
    }
  }
 
  // Driver Code
  public static void Main(string[] args) {
    int[] arr = { 1, 1, 2, 4, 4, 5, 5, 6, 6 };
    int len = arr.Length;
 
    // function calling
    Search(arr, len);
 
    return ;
  }
}


Javascript




// Javascript equivalent of above code
 
// function to find element using dictionary
function search(arr){
    // taking dictionary to store frequency
    let freq = {};
 
    // iterating over array
    for (let i of arr){
        // storing frequency
        if (i in freq){
            freq[i] += 1;
        }
        else{
            freq[i] = 1;
        }
    }
 
    // iterating over dictionary
    for (let [key, value] of Object.entries(freq)){
        // if element found
        if (value == 1){
            // printing element
            console.log(key);
            break;
        }
    }
}
 
// Driver code
 
    arr = [1, 1, 2, 4, 4, 5, 5, 6, 6];
 
    search(arr);


Output

2










Time Complexity:- O(N)
Auxiliary Space:- O(N)

Another Approach Using Stacks:

We know that the given array is sorted in non-decreasing (ascending) order, and that every element occurs twice except for 1 element. The approach involves using a stack while iterating through the entire array. While pushing in elements, we may push this singular element on to the stack. By the end of the iteration we will have that singular element on the top of the stack which is returned.

While iterating through the array, if we have no element in the stack, or the consective element is not equal to the top most element in the stack, we can push that element to the stack. Else we can pop the top element from the stack. Finally, we can return the top most element, which is the singular element in the array.

C++




// C++ program to find the element that
// appears only once
#include <bits/stdc++.h>
using namespace std;
 
// function to find element using stack
int singleNonDuplicate(vector<int>& nums) {
         //declaring the stack for stroing elements
        stack<int> stk;
          //traversing linearly over the entire array
        for (int i = 0; i < nums.size(); i++) {
              /*checking if element is presnt in the stack
          or the current array element equal to stack's top element*/
            if (stk.empty() or nums[i] != stk.top()) {
              //pushing the element in the stack if conditions satisfied
                stk.push(nums[i]);
            } else {
              //If condition doesn't match pop elements from the stack
                stk.pop();
            }
        }
          //return the topmost element from the stack
        return stk.top();
    }
 
// Driver code
int main()
{
  //declaring a vector
    vector<int> arr{ 1, 1, 2, 4, 4, 5, 5, 6, 6 };
    //calling function
    cout<<singleNonDuplicate(arr)<<endl;
 
    return 0;
}
 
// This code is contributed by shubhamrajput6156


Java




// Java program to find the element that
// appears only once
 
import java.util.Stack;
 
public class GFG {
 
    // function to find element using stack
    public static int singleNonDuplicate(int[] nums) {
        // declaring the stack for storing elements
        Stack<Integer> stk = new Stack<>();
 
        // traversing linearly over the entire array
        for (int i = 0; i < nums.length; i++) {
            /* checking if the stack is empty or the current array element is not equal to
               stack's top element */
            if (stk.isEmpty() || nums[i] != stk.peek()) {
                // pushing the element into the stack if the conditions are satisfied
                stk.push(nums[i]);
            } else {
                // If condition doesn't match, pop elements from the stack
                stk.pop();
            }
        }
 
        // return the topmost element from the stack which is the single non-duplicate element
        return stk.peek();
    }
 
    // Driver code
    public static void main(String[] args) {
        // declaring an array
        int[] arr = { 1, 1, 2, 4, 4, 5, 5, 6, 6 };
         
        // calling function
        System.out.println(singleNonDuplicate(arr));
    }
}


Python3




# Python3 program to find the element that
# appears only once
  
# function to find element using stack
def singleNonDuplicate(nums):
    # Declaring an empty list to act as a stack for storing elements
    stack = []
 
    # Traversing linearly over the entire array
    for num in nums:
        # Checking if the stack is empty or if the current array element is not equal to the stack's top element
        if not stack or num != stack[-1]:
            # Pushing the element into the stack if the conditions are satisfied
            stack.append(num)
        else:
            # If the condition doesn't match, it means the current element is a duplicate of the top element in the stack
            # So, popping the top element from the stack effectively removes the pair from the stack
            stack.pop()
 
    # The remaining element in the stack is the element that appears only once
    return stack[-1]
 
# Driver code
if __name__ == "__main__":
    # Declaring a list
    arr = [1, 1, 2, 4, 4, 5, 5, 6, 6]
 
    # Calling the function
    print(singleNonDuplicate(arr))


C#




using System;
using System.Collections.Generic;
 
namespace SingleNonDuplicate
{
    class Program
    {
        static int SingleNonDuplicate(List<int> nums)
        {
            // declaring the stack for storing elements
            Stack<int> stk = new Stack<int>();
 
            // traversing linearly over the entire array
            foreach (int num in nums)
            {
                // checking if element is present in the stack
                // or the current array element equal to stack's top element
                if (stk.Count == 0 || num != stk.Peek())
                {
                    // pushing the element in the stack if conditions satisfied
                    stk.Push(num);
                }
                else
                {
                    // if condition doesn't match, pop elements from the stack
                    stk.Pop();
                }
            }
 
            // return the topmost element from the stack
            return stk.Peek();
        }
 
        static void Main(string[] args)
        {
            // declaring a list
            List<int> arr = new List<int> { 1, 1, 2, 4, 4, 5, 5, 6, 6 };
 
            // calling function
            Console.WriteLine(SingleNonDuplicate(arr));
        }
    }
}
 
// This code is contributed by rambabuguphka


Javascript




function singleNonDuplicate(nums) {
    // Initialize an empty stack
    const stack = [];
 
    // Traverse the array linearly
    for (let i = 0; i < nums.length; i++) {
        // Check if the stack is empty or the current
        // array element is not equal to the stack's top element
        if (stack.length === 0 || nums[i] !== stack[stack.length - 1]) {
            // Push the element onto the stack if the conditions are satisfied
            stack.push(nums[i]);
        } else {
            // If the condition doesn't match, pop elements from the stack
            stack.pop();
        }
    }
 
    // Return the topmost element from the stack
    return stack[0];
}
 
// Driver code
const arr = [1, 1, 2, 4, 4, 5, 5, 6, 6];
console.log(singleNonDuplicate(arr)); // Output: 2


Output:

2

Time Complexity:- O(N) for traversing through entire array linearly.
Auxiliary Space:- O(N) for stroing the elements in stack.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments