Sunday, September 7, 2025
HomeData Modelling & AIFind sum of the series 1+22+333+4444+…… upto n terms

Find sum of the series 1+22+333+4444+…… upto n terms

Given a number N. The task is to find the sum of the below series up to N-th term:
 

1 + 22 + 333 + 4444 + …up to n terms

Examples
 

Input: N = 3
Output: 356

Input: N = 10 
Output: 12208504795

 

Approach: 

    Let $$A_n = 1 + 22 + 333 + 4444 +......+ n( \overbrace{11...1} )$$ Then\\ $$A_n = \frac{10^{n+1}(9n-1)}{9^3}+\frac{10}{9^3}-\frac{n(n+1)}{18}$$ we define $S_n(x)=x+2x^2++3x^2+...+nx^n$\\\\ $9A_n$ $=9+2.99+3.999+....+n(99...99)$\\ $9A_n$ $=(10-1)+2(10^2-1)+3(10^3-1)+...+n(10^n-1)$\\ $9A_n$ $=10+2.10^2+3.10^3+...+n.10^n-(1+2+3+...+n)$\\ $9A_n$ $=S_n(10)-\frac{n(n+1)}{2}$\\\\ Now, \\ $\frac{S_n(x)}{x}= 1+ 2x+3x^2+...+nx^{n}$\\ $\frac{S_n(x)}{x}= \frac{d}{dx}(1+x+x^2+x^3+...+x^n) $\\ $\frac{S_n(x)}{x}= \frac{d}{dx}\left (\frac{x^{n+1}-1}{x-1}\right )$\\ $\frac{S_n(x)}{x}= \frac{nx^{n+1}-(n+1)x^n+1}{(x-1)^2}$\\\\ Finally, $$A_n=\frac{1}{9} \left (10 \left ( \frac{n10^{n+1}-(n+1)10^n+1}{9^2}\right )-\frac{n(n+1)}{2}\right )}$$ $$A_n=\frac{10n^{n+1}(9n-1)}{9^3}+\frac{10}{9^3}-\frac{n(n+1)}{18}$$ $$

Below is the implementation of the above approach:
 

C++




// CPP program to find the sum
// of given series
 
#include <iostream>
#include <math.h>
 
using namespace std;
 
// Function to calculate sum
int findSum(int n)
{
    // Return sum
    return (pow(10, n + 1) * (9 * n - 1) + 10) /
                    pow(9, 3) - n * (n + 1) / 18;
}
 
// Driver code
int main()
{
    int n = 3;
 
    cout << findSum(n);
     
    return 0;
}


Java




// Java Program to find
// Sum of first n terms
import java.util.*;
 
class solution
{
static int calculateSum(int n)
{
 
// Returning the final sum
return ((int)Math.pow(10, n + 1) * (9 * n - 1) + 10) /
                (int)Math.pow(9, 3) - n * (n + 1) / 18;
}
 
// Driver code
public static void main(String ar[])
{
// no. of terms to find the sum
int n=3;
System.out.println("Sum= "+ calculateSum(n));
 
}
}
 
//This code is contributed by Surendra_Gangwar


Python 3




# Python program to find the sum of given series.
 
 
# Function to calculate sum
def solve_sum(n):
    # Return sum
    return (pow(10, n + 1)*(9 * n - 1)+10)/pow(9, 3)-n*(n + 1)/18
 
# driver code
n = 3
 
print(int(solve_sum(n)))


C#




// C# Program to find
// Sum of first n terms
using System;
class solution
{
static int calculateSum(int n)
{
 
// Returning the final sum
return ((int)Math.Pow(10, n + 1) * (9 * n - 1) + 10) /
                (int)Math.Pow(9, 3) - n * (n + 1) / 18;
}
 
// Driver code
public static void  Main()
{
// no. of terms to find the sum
int n=3;
Console.WriteLine("Sum= "+ calculateSum(n));
 
}
}
 
//This code is contributed by inder_verma.


PHP




<?php
// PHP program to find the sum
// of given series
 
// Function to calculate sum
function findSum($n)
{
    // Return sum
    return (pow(10, $n + 1) *
               (9 * $n - 1) + 10) /
            pow(9, 3) - $n * ($n + 1) / 18;
}
 
// Driver code
 
$n = 3;
 
echo findSum($n);
 
// This code is contributed
// by inder_verma.
?>


Javascript




<script>
// Javascript Program to find
// Sum of first n terms
 
    function calculateSum( n)
    {
 
        // Returning the const sum
        return (parseInt(Math.pow(10, n + 1)) * (9 * n - 1) + 10) /
                parseInt(Math.pow(9, 3)) - n * (n + 1) / 18;
     }
 
    // Driver code
     
    // no. of terms to find the sum
    let n = 3;
    document.write("Sum= " + calculateSum(n));
 
// This code is contributed by 29AjayKumar 
</script>


Output: 

356

 

Time Complexity: O(logn), where n represents the given integer, as we have used pow function.
Auxiliary Space: O(1), no extra space is required, so it is a constant.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32271 POSTS0 COMMENTS
Milvus
82 POSTS0 COMMENTS
Nango Kala
6641 POSTS0 COMMENTS
Nicole Veronica
11807 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11870 POSTS0 COMMENTS
Shaida Kate Naidoo
6755 POSTS0 COMMENTS
Ted Musemwa
7030 POSTS0 COMMENTS
Thapelo Manthata
6705 POSTS0 COMMENTS
Umr Jansen
6721 POSTS0 COMMENTS