Thursday, January 9, 2025
Google search engine
HomeData Modelling & AIFind sum of inverse of the divisors when sum of divisors and...

Find sum of inverse of the divisors when sum of divisors and the number is given

Given an integer N and the sum of its divisors. The task is to find the sum of the inverse of the divisors of N.
Examples: 
 

Input: N = 6, Sum = 12 
Output: 2.00 
Divisors of N are {1, 2, 3, 6} 
Sum of inverse of divisors is equal to (1/1 + 1/2 + 1/3 + 1/6) = 2.0
Input: N = 9, Sum = 13 
Output: 1.44 
 

 

Naive Approach: Calculate all the divisors of the given integer N. Then calculate the sum of the inverse of the calculated divisors. This approach would give TLE when the value of N is large. 
Time Complexity: O(sqrt(N))
Efficient Approach: Let the number N has K divisors say d1, d2, …, dK. It is given that d1 + d2 + … + dK = Sum 
The task is to calculate (1 / d1) + (1 / d2) + … + (1 / dK)
Multiply and divide the above equation by N. The equation becomes [(N / d1) + (N / d2) + … + (N / dK)] / N
Now it is easy to see that N / di would represent another divisor of N for all 1 ? i ? K. The numerator is equal to the sum of the divisors. Hence, sum of inverse of the divisors is equal to Sum / N.
Below is the implementation of the above approach:
 

C++




// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the
// sum of inverse of divisors
double SumofInverseDivisors(int N, int Sum)
{
 
    // Calculating the answer
    double ans = (double)(Sum)*1.0 / (double)(N);
 
    // Return the answer
    return ans;
}
 
// Driver code
int main()
{
    int N = 9;
 
    int Sum = 13;
 
    // Function call
    cout << setprecision(2) << fixed
         << SumofInverseDivisors(N, Sum);
 
    return 0;
}


Java




// Java implementation of above approach
import java.math.*;
import java.io.*;
 
class GFG
{
     
// Function to return the
// sum of inverse of divisors
static double SumofInverseDivisors(int N, int Sum)
{
 
    // Calculating the answer
    double ans = (double)(Sum)*1.0 / (double)(N);
 
    // Return the answer
    return ans;
}
 
// Driver code
public static void main (String[] args)
{
 
    int N = 9;
    int Sum = 13;
 
    // Function call
    System.out.println (SumofInverseDivisors(N, Sum));
}
}
 
// This code is contributed by jit_t.


Python




# Python implementation of above approach
 
# Function to return the
# sum of inverse of divisors
def SumofInverseDivisors( N, Sum):
 
    # Calculating the answer
    ans = float(Sum)*1.0 /float(N);
 
    # Return the answer
    return round(ans,2);
 
 
# Driver code
if __name__ == "__main__" :
  N = 9;
  Sum = 13;
  print(SumofInverseDivisors(N, Sum))
 
# This code is contributed by CrazyPro


C#




// C# implementation of above approach
using System;
 
class GFG
{
         
// Function to return the
// sum of inverse of divisors
static double SumofInverseDivisors(int N, int Sum)
{
 
    // Calculating the answer
    double ans = (double)(Sum)*1.0 / (double)(N);
 
    // Return the answer
    return ans;
}
 
// Driver code
static public void Main ()
{
     
    int N = 9;
    int Sum = 13;
 
    // Function call
    Console.Write(SumofInverseDivisors(N, Sum));
}
}
 
// This code is contributed by ajit


Javascript




<script>
 
// JavaScript implementation of above approach
 
// Function to return the
// sum of inverse of divisors
function SumofInverseDivisors(N, Sum)
{
 
    // Calculating the answer
    let ans = (Sum)*1.0 / (N);
 
    // Return the answer
    return ans;
}
 
// Driver code
 
    let N = 9;
 
    let Sum = 13;
 
    // Function call
    document.write(SumofInverseDivisors(N, Sum).toFixed(2));
 
// This code is contributed by Surbhi Tyagi.
 
</script>


Output: 

1.44

 

Time Complexity: O(1)

Auxiliary Space: O(1)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments