Thursday, January 9, 2025
Google search engine
HomeData Modelling & AIFind sum of first N terms of the series 5, 11, 19,...

Find sum of first N terms of the series 5, 11, 19, 29, 41, . . .

Given an integer N. The task is to find the sum of the first N terms of the series 5, 11, 19, 29, 41, . . . till Nth term

Examples:

Input:  N = 5
Output: 105
Explanation: 5 + 11 + 19 + 29 + 41 = 105.

Input: N = 2
Output: 16
Explanation: The terms are 5 and 11

 

Approach: From the given series first determine the Nth term:

1st term = 5 = 1 + 4 = 1 + 22
2nd term = 11 = 2 + 9 = 2 + 32
3rd term = 19 = 3 + 16 = 3 + 42
4th term = 29 = 4 + 25 = 4 + 52
.
.
Nth term = N + (N+1)2

So the Nth term can be written as: TN = N + (N+1)2

Therefore the sum up to N terms becomes

1 + 22 + 2 + 32 + 3 + 42 + . . . + N + (N+1)2
= [1 + 2 + 3 + . . . + N] + [22 + 32 + 42 + . . . + (N+1)2]
= (N*(N+1))/2 + [(N+1)*(N+2)*(2*N + 3)]/6 – 1
= [N*(N+2)*(N+4)]/3

Therefore the sum of the first N terms can be given as: SN = [N*(N+2)*(N+4)]/3 

Illustration:

For example, take N = 5
The output will be 105.
Use N = 5, then N*(N+2)*(N+4)/3
= 5 * 7 * 9/3 = 5 * 7 * 3 = 105.
This is same as 5 + 11 + 19 + 29 + 41

Below is the implementation of the above approach.

C++




// C++ code to implement the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate
// the sum of first N terms
int nthSum(int N)
{
    // Formula for sum of N terms
    int ans = (N * (N + 2) * (N + 4)) / 3;
    return ans;
}
 
// Driver code
int main()
{
    int N = 5;
    cout << nthSum(N);
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
public class GFG
{
 
  // Function to calculate
  // the sum of first N terms
  static int nthSum(int N)
  {
    // Formula for sum of N terms
    int ans = (N * (N + 2) * (N + 4)) / 3;
    return ans;
  }
 
  // Driver code
  public static void main(String args[])
  {
    int N = 5;
    System.out.println(nthSum(N));
  }
}
 
// This code is contributed by Samim Hossain Mondal.


Python3




# Python code to implement the above approach
 
# Function to calculate
# the sum of first N terms
def nthSum(N):
 
    # Formula for sum of N terms
    ans = (int)((N * (N + 2) * (N + 4)) / 3)
    return ans
 
# Driver code
N = 5
print(nthSum(N))
 
# This code is contributed by Taranpreet


C#




// C# program for the above approach
using System;
class GFG
{
   
// Function to calculate
// the sum of first N terms
static int nthSum(int N)
{
    // Formula for sum of N terms
    int ans = (N * (N + 2) * (N + 4)) / 3;
    return ans;
}
 
// Driver code
public static void Main()
{
    int N = 5;
    Console.Write(nthSum(N));
}
}
 
// This code is contributed by Samim Hossain Mondal.


Javascript




<script>
    // JavaScript code for the above approach
 
    // Function to calculate
    // the sum of first N terms
    function nthSum(N)
    {
     
        // Formula for sum of N terms
        let ans = (N * (N + 2) * (N + 4)) / 3;
        return ans;
    }
 
    // Driver code
    let N = 5;
    document.write(nthSum(N));
 
   // This code is contributed by Potta Lokesh
</script>


Output

105

 Time Complexity: O(1)
Auxiliary Space: O(1), since no extra space has been taken.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments