Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIFind sum of a number and its maximum prime factor

Find sum of a number and its maximum prime factor

Given an integer N, the task is to find the sum of N and it’s maximum prime factor.
Examples: 
 

Input: 19 
Output: 38 
Maximum prime factor of 19 is 19. 
Hence, 19 + 19 = 38
Input:
Output: 10 
8 + 2 = 10 
 

 

Approach: Find the largest prime factor of the number and store it in maxPrimeFact then print the value of N + maxPrimeFact.
Below is the implementation of the above approach: 
 

C++




// C++ program to find sum of n and
// it's largest prime factor
#include <cmath>
#include <iostream>
using namespace std;
 
// Function to return the sum of n and
// it's largest prime factor
int maxPrimeFactors(int n)
{
    int num = n;
 
    // Initialise maxPrime to -1.
    int maxPrime = -1;
 
    while (n % 2 == 0) {
        maxPrime = 2;
        n /= 2;
    }
 
    // n must be odd at this point, thus skip
    // the even numbers and iterate only odd numbers
    for (int i = 3; i <= sqrt(n); i += 2) {
        while (n % i == 0) {
            maxPrime = i;
            n = n / i;
        }
    }
 
    // This condition is to handle the case
    // when n is a prime number greater  than 2
    if (n > 2)
        maxPrime = n;
 
    // finally return the sum.
    int sum = maxPrime + num;
    return sum;
}
 
// Driver Program to check the above function.
int main()
{
    int n = 19;
 
    cout << maxPrimeFactors(n);
    return 0;
}


Java




// Java program to find sum of n and
// it's largest prime factor
import java.io.*;
 
class GFG
{
 
// Function to return the sum of n
// and it's largest prime factor
static int maxPrimeFactors(int n)
{
int num = n;
 
// Initialise maxPrime to -1.
int maxPrime = -1;
 
while (n % 2 == 0)
{
maxPrime = 2;
n /= 2;
}
 
// n must be odd at this point,
// thus skip the even numbers and
// iterate only odd numbers
for (int i = 3; i <= Math.sqrt(n); i += 2) {
     
    while (n % i == 0) {
        maxPrime = i; n = n / i;
        }
     
}
        // This condition is to handle the case
        // when n is a prime number greater than 2
        if (n > 2) {
            maxPrime = n;
        }
// finally return the sum.
int sum = maxPrime + num;
return sum;
}
 
// Driver Code
public static void main (String[] args)
{
int n = 19;
 
System.out.println(maxPrimeFactors(n));
}
}
// This code is contributed by anuj_67


Python3




# Python 3 program to find sum of n and
# it's largest prime factor
from math import sqrt
 
# Function to return the sum of n and
# it's largest prime factor
def maxPrimeFactors(n):
    num = n
 
    # Initialise maxPrime to -1.
    maxPrime = -1;
 
    while (n % 2 == 0):
        maxPrime = 2
        n = n / 2
     
    # n must be odd at this point, thus skip
    # the even numbers and iterate only odd numbers
    p = int(sqrt(n) + 1)
    for i in range(3, p, 2):
        while (n % i == 0):
            maxPrime = i
            n = n / i
         
    # This condition is to handle the case
    # when n is a prime number greater than 2
    if (n > 2):
        maxPrime = n
 
    # finally return the sum.
    sum = maxPrime + num
    return sum
 
# Driver Code
if __name__ == '__main__':
    n = 19
 
    print(maxPrimeFactors(n))
 
# This code is contributed by
# Surendra_Gangwar


C#




// C# program to find sum of n and
// it's largest prime factor
using System;
 
class GFG
{
// Function to return the sum of n
// and it's largest prime factor
static int maxPrimeFactors(int n)
{
int num = n;
 
// Initialise maxPrime to -1.
int maxPrime = -1;
 
while (n % 2 == 0)
{
    maxPrime = 2;
    n /= 2;
}
 
// n must be odd at this point,
// thus skip the even numbers and
// iterate only odd numbers
for (int i = 3;
         i <= Math.Sqrt(n); i += 2)
{
     
    while (n % i == 0)
    {
        maxPrime = i; n = n / i;
    }
     
}
 
// This condition is to handle the case
// when n is a prime number greater than 2
if (n > 2)
{
    maxPrime = n;
}
 
// finally return the sum.
int sum = maxPrime + num;
return sum;
}
 
// Driver Code
static void Main ()
{
    int n = 19;
     
    Console.WriteLine(maxPrimeFactors(n));
}
}
 
// This code is contributed by Ryuga


PHP




<?php
// PHP program to find sum of n and
// it's largest prime factor
 
// Function to return the sum of n
// and it's largest prime factor
function maxPrimeFactors($n)
{
    $num = $n;
 
    // Initialise maxPrime to -1.
    $maxPrime = -1;
 
    while ($n % 2 == 0)
    {
        $maxPrime = 2;
        $n /= 2;
    }
 
    // n must be odd at this point,
    // thus skip the even numbers
    // and iterate only odd numbers
    for ($i = 3; $i <= sqrt($n); $i += 2)
    {
        while ($n % $i == 0)
        {
            $maxPrime = $i;
            $n = $n / $i;
        }
    }
 
    // This condition is to handle the case
    // when n is a prime number greater than 2
    if ($n > 2)
        $maxPrime = $n;
 
    // finally return the sum.
    $sum = $maxPrime + $num;
    return $sum;
}
 
// Driver Code
$n = 19;
 
echo maxPrimeFactors($n);
 
// This code is contributed
// by inder_verma
?>


Javascript




<script>
 
// Javascript program to find sum of n and
// it's largest prime factor
 
// Function to return the sum of n
// and it's largest prime factor
function maxPrimeFactors(n)
{
    var num = n;
     
    // Initialise maxPrime to -1.
    var maxPrime = -1;
     
    while (n % 2 == 0)
    {
        maxPrime = 2;
        n = parseInt(n/2);
    }
     
    // n must be odd at this point,
    // thus skip the even numbers and
    // iterate only odd numbers
    for (var i = 3; i <= parseInt(Math.sqrt(n)); i += 2)
    {
         
        while (n % i == 0) {
            maxPrime = i;
            n = parseInt(n / i);
        }
         
    }
            // This condition is to handle the case
            // when n is a prime number greater than 2
            if (n > 2) {
                maxPrime = n;
            }
    // finally return the sum.
    var sum = maxPrime + num;
    return sum;
}
 
// Driver Code
 
var n = 19;
 
document.write(maxPrimeFactors(n));
 
 
// This code contributed by shikhasingrajput
 
</script>


Output: 

38

 

Time Complexity: O(sqrtn*logn)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments