Given an array arr[] of integers and a sequence of the form:
[ 2, 3, 0, 1, 6, 7, 4, 5, … ].
Also given two integers L and R such that . The task is to find the sum of all numbers in a given range from L to R.
Examples:
Input : L = 0, R = 5 Output : 19 Explanation : The arr[] is {2, 3, 0, 1, 6, 7}. sum = arr[0] + arr[1] + arr[2] + arr[3] + arr[4] + arr[5] sum = 2 + 3 + 0 + 1 + 6 + 7 Hence, the sum is 19. Input : L = 2, R = 5 Output : 14 Explanation : The arr[] is {0, 1, 6, 7}. sum = arr[2] + arr[3] + arr[4] + arr[5] sum = 0 + 1 + 6 + 7 Hence, the sum is 14.
Approach:
To solve the question mentioned above we first have to observe the sequence of the array and understand how is it generated. The given array is generated from a sequence of whole numbers which is [ 0, 1, 2, 3, 4, 5, 6, … ]. Initially, we add 2 to the first two integers, then we subtract 2 from the next two integers and this goes on. So our newly formed array looks like [ 0+2, 1+2, 2-2, 3-2, 4+2, 5+2, 6-2, 7-2, … ]. Hence we generate this new sequence of integers up to R and store it in array. Finally, calculate the sum from indices in range L to R and return it.
Below is the implementation of the above approach:
C++
// C++ program to find the // sum in given range L to R #include <bits/stdc++.h> using namespace std; // Function to find the sum // within the given range int findSum( int L, int R) { vector< int > arr; // generating array from given sequence int i = 0; int x = 2; while (i <= R) { arr.push_back(i + x); if (i + 1 <= R) arr.push_back(i + 1 + x); x *= -1; i += 2; } // calculate the desired sum int sum = 0; for ( int i = L; i <= R; ++i) sum += arr[i]; // return the sum return sum; } // Driven code int main() { // initialise the range int L = 0, R = 5; cout << findSum(L, R); return 0; } |
Java
// Java program to find the // sum in given range L to R import java.util.*; class GFG{ // Function to find the sum // within the given range public static int findSum( int L, int R) { ArrayList<Integer> arr = new ArrayList<>(); // Generating array from given sequence int i = 0 ; int x = 2 ; while (i <= R) { arr.add(i + x); if (i + 1 <= R) arr.add(i + 1 + x); x *= - 1 ; i += 2 ; } // Calculate the desired sum int sum = 0 ; for (i = L; i <= R; ++i) sum += arr.get(i); // return the sum return sum; } // Driver code public static void main(String[] args) { // Initialise the range int L = 0 , R = 5 ; System.out.println(findSum(L, R)); } } // This code is contributed by jrishabh99 |
Python3
# Python3 program to find the # sum in given range L to R # Function to find the sum # within the given range def findSum(L, R) : arr = [] # generating array from given sequence i = 0 x = 2 k = 0 while (i < = R) : arr.insert(k, i + x) k + = 1 if (i + 1 < = R) : arr.insert(k, i + 1 + x) k + = 1 x * = - 1 i + = 2 # calculate the desired sum sum = 0 for i in range (L, R + 1 ) : sum + = arr[i] # return the sum return sum # Driver code # initialise the range L = 0 R = 5 print (findSum(L, R)) # This code is contributed by Sanjit_Prasad |
C#
// C# program to find the // sum in given range L to R using System; using System.Collections; class GFG{ // Function to find the sum // within the given range public static int findSum( int L, int R) { ArrayList arr = new ArrayList(); // Generating array from given sequence int i = 0; int x = 2; while (i <= R) { arr.Add(i + x); if (i + 1 <= R) arr.Add(i + 1 + x); x *= -1; i += 2; } // Calculate the desired sum int sum = 0; for (i = L; i <= R; ++i) sum += ( int )arr[i]; // return the sum return sum; } // Driver code public static void Main( string [] args) { // Initialise the range int L = 0, R = 5; Console.Write(findSum(L, R)); } } // This code is contributed by rutvik_56 |
Javascript
<script> //Javascript program to find the // sum in given range L to R // Function to find the sum // within the given range function findSum( L, R) { var arr=[]; // generating array from given sequence var i = 0; var x = 2; while (i <= R) { arr.push(i + x); if (i + 1 <= R) arr.push(i + 1 + x); x *= -1; i += 2; } // calculate the desired sum var sum = 0; for ( var i = L; i <= R; ++i) sum += arr[i]; // return the sum return sum; } var L = 0, R = 5; document.write( findSum(L, R)); //This code is contributed by SoumikMondal </script> |
19
Time Complexity: O(R)
Auxiliary Space: O(R)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!