Sunday, December 29, 2024
Google search engine
HomeData Modelling & AIFind smallest number formed by inserting given digit

Find smallest number formed by inserting given digit

Given a string N and a digit X ([1, 9]), the task is to find the minimum integer number formed by inserting digit X anywhere in N.

Examples:

Input: N = “89”, X = 1
Output: “189″
Explanation: X can be inserted at 3 positions {189, 891, 819} and 189 is the minimum. 

Input: N = “-12”, X = 3
Output: “-312″

Naive Approach:  A simple approach to this problem is to insert X in all the positions (except the left of the negative sign if present) and find the minimum among all the numbers formed.The approach is inefficient in the case of larger strings.

Efficient Approach: The main idea is that if N is a positive insert in such a way that the number formed is minimum whereas if N is negative, then insert in X such as the number formed is maximum, ignoring the negative sign. Follow the steps below to optimize the above approach:

  • Initialize two variables, say len = length of string N and position = n + 1.
  • If N is negative (N[0] = ‘-‘), traverse the string from (n-1)th index to 1th index and check if  N[i] – ‘0’ < X, if true then update position = i.
  • If N is positive, traverse the string from (n-1)th index to 0th index and check if  N[i] – ‘0’ > X, if true then update position = i.
  • Insert X at index position in N.
  • Finally, return the string N.

Below is the implementation of the above approach:

C++




// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to insert X in N and
// return the minimum value string
string MinValue(string N, int X)
{
 
    // Variable to store length
    // of string N
    int len = N.size();
 
    // Variable to denote the position
    // where X must be added
    int position = len + 1;
 
    // If the given string N represent
    // a negative value
    if (N[0] == '-') {
        // X must be place at the last
        // index where is greater than N[i]
        for (int i = len - 1; i >= 1; i--) {
            if ((N[i] - '0') < X) {
                position = i;
            }
        }
    }
    else {
        // For positive numbers, X must be
        // placed at the last index where
        // it is smaller than N[i]
        for (int i = len - 1; i >= 0; i--) {
            if ((N[i] - '0') > X) {
                position = i;
            }
        }
    }
    // Insert X at that position
    N.insert(N.begin() + position, X + '0');
 
    // Return the string
    return N;
}
 
// Driver Code
int main()
{
    // Given Input
    string N = "89";
    int X = 1;
 
    // Function Call
    cout << MinValue(N, X) << "\n";
}


Java




// Java implementation of above approach
import java.io.*;
import java.lang.*;
import java.util.*;
public class GFG {
 
  // Function to insert X in N and
  // return the minimum value string
  static String MinValue(String number, int x)
  {
 
    // Variable to store length
    // of string N
    int length = number.length();
 
    // Variable to denote the position
    // where X must be added
    int position = length + 1;
 
    // If the given string N represent
    // a negative value
    if (number.charAt(0) == '-') {
 
      // X must be place at the last
      // index where is greater than N[i]
      for (int i = number.length() - 1; i >= 1; --i) {
        if ((number.charAt(i) - 48) < x) {
          position = i;
        }
      }
    }
    else {
 
      // For positive numbers, X must be
      // placed at the last index where
      // it is smaller than N[i]
      for (int i = number.length() - 1; i >= 0; --i) {
        if ((number.charAt(i) - 48) > x) {
          position = i;
        }
      }
    }
 
    // Insert X at that position
    number
      = number.substring(0, position) + x
      + number.substring(position, number.length());
 
    // return string
    return number.toString();
  }
 
  // Driver call
  public static void main(String[] args)
  {
 
    // given input
    String number = "89";
    int x = 1;
 
    // function call
    System.out.print(MinValue(number, x));
  }
}
 
// This code is contributed by zack_aayush.


Python3




# Python Program for the above approach
 
# Function to insert X in N and
# return the minimum value string
def MinValue(N, X):
 
    # Variable to store length
    # of string N
    N = list(N);
    ln = len(N)
 
    # Variable to denote the position
    # where X must be added
    position = ln + 1
 
    # If the given string N represent
    # a negative value
    if (N[0] == '-'):
       
        # X must be place at the last
        # index where is greater than N[i]
        for i in range(ln - 1, 0, -1):
            if ((ord(N[i]) - ord('0')) < X):
                position = i
 
    else:
        # For positive numbers, X must be
        # placed at the last index where
        # it is smaller than N[i]
        for i in range(ln - 1, -1, -1):
            if ((ord(N[i]) - ord('0')) > X):
                position = i
 
    # Insert X at that position
    c = chr(X + ord('0'))
 
    str = N.insert(position, c);
 
 
    # Return the string
    return ''.join(N)
 
# Driver Code
 
# Given Input
N = "89"
X = 1
 
# Function Call
print(MinValue(N, X))
 
# This code is contributed by gfgking


C#




// C# program for the above approach
using System;
 
class GFG {
     
  // Function to insert X in N and
  // return the minimum value string
  static String MinValue(string number, int x)
  {
 
    // Variable to store length
    // of string N
    int length = number.Length;
 
    // Variable to denote the position
    // where X must be added
    int position = length + 1;
 
    // If the given string N represent
    // a negative value
    if (number[0] == '-') {
 
      // X must be place at the last
      // index where is greater than N[i]
      for (int i = number.Length - 1; i >= 1; --i) {
        if ((number[i] - 48) < x) {
          position = i;
        }
      }
    }
    else {
 
      // For positive numbers, X must be
      // placed at the last index where
      // it is smaller than N[i]
      for (int i = number.Length - 1; i >= 0; --i) {
        if ((number[i] - 48) > x) {
          position = i;
        }
      }
    }
 
    // Insert X at that position
    number
      = number.Substring(0, position) + x
      + number.Substring(position, number.Length);
 
    // return string
    return number.ToString();
  }
     
    // Driver code
    public static void Main()
    {
        // given input
    string number = "89";
    int x = 1;
 
    // function call
    Console.WriteLine(MinValue(number, x));
    }
}
 
// This code is contributed by avijitmondal1998.


Javascript




<script>
     // JavaScript Program for the above approach
 
     // Function to insert X in N and
     // return the minimum value string
     function MinValue(N, X) {
 
         // Variable to store length
         // of string N
         let len = N.length;
 
         // Variable to denote the position
         // where X must be added
         let position = len + 1;
 
         // If the given string N represent
         // a negative value
         if (N[0] == '-') {
             // X must be place at the last
             // index where is greater than N[i]
             for (let i = len - 1; i >= 1; i--) {
                 if ((N[i].charCodeAt(0) - '0'.charCodeAt(0)) < X) {
                     position = i;
                 }
             }
         }
         else {
             // For positive numbers, X must be
             // placed at the last index where
             // it is smaller than N[i]
             for (let i = len - 1; i >= 0; i--) {
                 if ((N[i].charCodeAt(0) - '0'.charCodeAt(0)) > X) {
                     position = i;
                 }
             }
         }
 
         // Insert X at that position
         const c = String.fromCharCode(X + '0'.charCodeAt(0));
 
 
         let str = N.slice(0, position) + c + N.slice(position);
 
         // Return the string
         return str;
     }
 
     // Driver Code
 
     // Given Input
     let N = "89";
     let X = 1;
 
     // Function Call
     document.write(MinValue(N, X));
 
 // This code is contributed by Potta Lokesh
 </script>


Output

189

Time Complexity: O(N)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments