Given an array A[] of N integers, the task is to find the relative rank for each element in the given array.
The relative rank for each element in the array is the count of elements which is greater than the current element in the Longest Increasing Subsequence from the current element.
Examples:
Input: A[] = {8, 16, 5, 6, 9}, N = 5
Output: {1, 0, 2, 1, 0}
Explanation:
For i = 0, required sequence is {8, 16} Relative Rank = 1.
For i = 1, Since all elements after 16 are smaller than 16, Relative Rank = 0.
For i = 2, required sequence is {5, 6, 9} Relative Rank = 2
For i = 3, required sequence is {6, 9} Relative Rank = 1
For i = 4, required sequence is {9} Relative Rank = 0Input: A[] = {1, 2, 3, 5, 4}
Output: {3, 2, 1, 0, 0}
Explanation:
For i = 0, required sequence is {1, 2, 3, 5}, Relative Rank = 3
For i = 1, required sequence is {2, 3, 5}, Relative Rank = 2
For i = 2, required sequence is {3, 5}, Relative Rank = 1
For i = 3, required sequence is {5}, Relative Rank = 0
For i = 4, required sequence is {4}, Relative Rank = 0
Naive Approach: The idea is to generate the longest increasing subsequence for each element and then, the relative rank for each element is the (length of LIS – 1).
Time Complexity: O(N2)
Auxiliary Space: O(1)
Efficient Approach: To optimize the above approach, the idea is to use a Stack and store the elements in non-decreasing order from the right to each element(say A[i]) then the rank for each A[i] is the (size of stack – 1) till that element. Below is the illustration of the same:
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find relative rank for // each element in the array A[] void findRank( int A[], int N) { // Create Rank Array int rank[N] = {}; // Stack to store numbers in // non-decreasing order from right stack< int > s; // Push last element in stack s.push(A[N - 1]); // Iterate from second last // element to first element for ( int i = N - 2; i >= 0; i--) { // If current element is less // than the top of stack and // push A[i] in stack if (A[i] < s.top()) { s.push(A[i]); // Rank is stack size - 1 // for current element rank[i] = s.size() - 1; } else { // Pop elements from stack // till current element is // greater than the top while (!s.empty() && A[i] >= s.top()) { s.pop(); } // Push current element in Stack s.push(A[i]); // Rank is stack size - 1 rank[i] = s.size() - 1; } } // Print rank of all elements for ( int i = 0; i < N; i++) { cout << rank[i] << " " ; } } // Driver Code int main() { // Given array A[] int A[] = { 1, 2, 3, 5, 4 }; int N = sizeof (A) / sizeof (A[0]); // Function call findRank(A, N); return 0; } |
Java
// Java program to implement // the above approach import java.io.*; import java.util.*; import java.lang.*; class GFG{ // Function to find relative rank for // each element in the array A[] static void findRank( int [] A, int N) { // Create Rank Array int [] rank = new int [N]; // Stack to store numbers in // non-decreasing order from right Stack<Integer> s = new Stack<Integer>(); // Push last element in stack s.add(A[N - 1 ]); // Iterate from second last // element to first element for ( int i = N - 2 ; i >= 0 ; i--) { // If current element is less // than the top of stack and // push A[i] in stack if (A[i] < s.peek()) { s.add(A[i]); // Rank is stack size - 1 // for current element rank[i] = s.size() - 1 ; } else { // Pop elements from stack // till current element is // greater than the top while (!s.isEmpty() && A[i] >= s.peek()) { s.pop(); } // Push current element in Stack s.add(A[i]); // Rank is stack size - 1 rank[i] = s.size() - 1 ; } } // Print rank of all elements for ( int i = 0 ; i < N; i++) { System.out.print(rank[i] + " " ); } } // Driver Code public static void main(String[] args) { // Given array A[] int A[] = { 1 , 2 , 3 , 5 , 4 }; int N = A.length; // Function call findRank(A, N); } } // This code is contributed by sanjoy_62 |
Python3
# Python3 program for the above approach # Function to find relative rank for # each element in the array A[] def findRank(A, N): # Create Rank Array rank = [ 0 ] * N # Stack to store numbers in # non-decreasing order from right s = [] # Push last element in stack s.append(A[N - 1 ]) # Iterate from second last # element to first element for i in range (N - 2 , - 1 , - 1 ): # If current element is less # than the top of stack and # append A[i] in stack if (A[i] < s[ - 1 ]): s.append(A[i]) # Rank is stack size - 1 # for current element rank[i] = len (s) - 1 else : # Pop elements from stack # till current element is # greater than the top while ( len (s) > 0 and A[i] > = s[ - 1 ]): del s[ - 1 ] # Push current element in Stack s.append(A[i]) # Rank is stack size - 1 rank[i] = len (s) - 1 # Print rank of all elements for i in range (N): print (rank[i], end = " " ) # Driver Code if __name__ = = '__main__' : # Given array A[] A = [ 1 , 2 , 3 , 5 , 4 ] N = len (A) # Function call findRank(A, N) # This code is contributed by mohit kumar 29 |
C#
// C# program to implement // the above approach using System; using System.Collections.Generic; using System.Linq; class GFG{ // Function to find relative rank for // each element in the array A[] static void findRank( int [] A, int N) { // Create Rank Array int [] rank = new int [N]; // Stack to store numbers in // non-decreasing order from right Stack< int > s = new Stack< int >(); // Push last element in stack s.Push(A[N - 1]); // Iterate from second last // element to first element for ( int i = N - 2; i >= 0; i--) { // If current element is less // than the top of stack and // push A[i] in stack if (A[i] < s.Peek()) { s.Push(A[i]); // Rank is stack size - 1 // for current element rank[i] = s.Count() - 1; } else { // Pop elements from stack // till current element is // greater than the top while (s.Count() != 0 && A[i] >= s.Peek()) { s.Pop(); } // Push current element in Stack s.Push(A[i]); // Rank is stack size - 1 rank[i] = s.Count() - 1; } } // Print rank of all elements for ( int i = 0; i < N; i++) { Console.Write(rank[i] + " " ); } } // Driver Code public static void Main() { // Given array A[] int [] A = new int [] { 1, 2, 3, 5, 4 }; int N = A.Length; // Function call findRank(A, N); } } // This code is contributed by sanjoy_62 |
Javascript
class GFG { // Function to find relative rank for // each element in the array A[] static findRank(A, N) { // Create Rank Array var rank = Array(N).fill(0); // Stack to store numbers in // non-decreasing order from right var s = Array(); // Push last element in stack (s.push(A[N - 1]) > 0); // Iterate from second last // element to first element for ( var i = N - 2; i >= 0; i--) { // If current element is less // than the top of stack and // push A[i] in stack if (A[i] < s[s.length-1]) { (s.push(A[i]) > 0); // Rank is stack size - 1 // for current element rank[i] = s.length - 1; } else { // Pop elements from stack // till current element is // greater than the top while (!(s.length == 0) && A[i] >= s[s.length-1]) { s.pop(); } // Push current element in Stack (s.push(A[i]) > 0); // Rank is stack size - 1 rank[i] = s.length - 1; } } // Print rank of all elements for ( var i=0; i < N; i++) { console.log(rank[i] + " " ); } } // Driver Code static main(args) { // Given array A[] var A = [1, 2, 3, 5, 4]; var N = A.length; // Function call GFG.findRank(A, N); } } GFG.main([]); // This code is contributed by aadityaburujwale. |
3 2 1 0 0
Time Complexity: O(N)
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!