Thursday, January 9, 2025
Google search engine
HomeData Modelling & AIFind probability of selecting element from kth column after N iterations

Find probability of selecting element from kth column after N iterations

Given a matrix M of order N*M where Mij represent the occurrence of j in row i. The task is to find the probability of occurrence of given k in last row after applying the given operation: 

  • Starting from 1st row, we select one element from any column of the entire row, and add it to the same column of next row. We repeating this till the last row.

Examples: 

Input: k = 1, M[][] = 
{{0, 1},
{1, 1}}   
Output:0.666667

Input: k = 1, M[][] = 
{{0, 1},
{1, 1}}  
Output: 0.333333

Approach : 

  • Pre-calculate a sum[] array which stores the sum of all elements of 1st row.
  • Fill 1st row of dp[][] by the first row of M[][] elements.
  • Calculate the probability of selecting an element from each column of a particular row and add the same to the corresponding column.
  • Also, update the Sum[] of the row while updating the value of dp[][] matrix.
  • Finally, the value of dp[n][k] for given k is the required value for the probability of selecting element k after all iterations.

Below is the implementation of the above approach: 

C++




// C++ implementation of the above approach
#include <bits/stdc++.h>
#define n 4
#define m 4
using namespace std;
 
// Function to calculate probability
float calcProbability(int M[][m], int k)
{
    // declare dp[][] and sum[]
    float dp[m][n], sum[n];
 
    // precalculate the first row
    for (int j = 0; j < n; j++) {
        dp[0][j] = M[0][j];
        sum[0] += dp[0][j];
    }
 
    // calculate the probability for
    // each element and update dp table
    for (int i = 1; i < m; i++) {
        for (int j = 0; j < n; j++) {
            dp[i][j] += dp[i - 1][j] / sum[i - 1] + M[i][j];
            sum[i] += dp[i][j];
        }
    }
 
    // return result
    return dp[n - 1][k - 1] / sum[n - 1];
}
 
// Driver code
int main()
{
 
    int M[m][n] = { { 1, 1, 0, 3 },
                    { 2, 3, 2, 3 },
                    { 9, 3, 0, 2 },
                    { 2, 3, 2, 2 } };
    int k = 3;
 
    cout << calcProbability(M, k);
    return 0;
}


Java




// Java implementation of the above approach
 
class GFG
{
    final static int n = 4 ;
    final static int m = 4 ;
 
    // Function to calculate probability
    static float calcProbability(int M[][], int k)
    {
        // declare dp[][] and sum[]
        float dp[][] = new float[m][n] ;
        float sum[] = new float[n];
     
        // precalculate the first row
        for (int j = 0; j < n; j++)
        {
            dp[0][j] = M[0][j];
            sum[0] = sum[0] + dp[0][j];
        }
     
        // calculate the probability for
        // each element and update dp table
        for (int i = 1; i < m; i++)
        {
            for (int j = 0; j < n; j++)
            {
                dp[i][j] += dp[i - 1][j] / sum[i - 1] +
                            M[i][j];
                sum[i] += dp[i][j];
            }
        }
     
        // return result
        return dp[n - 1][k - 1] / sum[n - 1];
    }
     
    // Driver code
    public static void main(String []args)
    {
        int M[][] = { { 1, 1, 0, 3 },
                      { 2, 3, 2, 3 },
                      { 9, 3, 0, 2 },
                      { 2, 3, 2, 2 } };
        int k = 3;
        System.out.println(calcProbability(M, k));
         
    }
}
 
// This code is contributed by Ryuga


Python3




# Python3 implementation of the
# above approach
 
n = 4
m = 4
 
# Function to calculate probability
def calcProbability(M, k):
 
    # declare dp[][] and sum[]
    dp = [[0 for i in range(n)]
             for i in range(m)]
    Sum = [0 for i in range(n)]
 
    # precalculate the first row
    for j in range(n):
        dp[0][j] = M[0][j]
        Sum[0] += dp[0][j]
     
    # calculate the probability for
    # each element and update dp table
    for i in range(1, m):
        for j in range(n):
            dp[i][j] += (dp[i - 1][j] /
                         Sum[i - 1] + M[i][j])
            Sum[i] += dp[i][j]
         
    # return result
    return dp[n - 1][k - 1] / Sum[n - 1]
 
# Driver code
 
M = [[ 1, 1, 0, 3 ],
     [ 2, 3, 2, 3 ],
     [ 9, 3, 0, 2 ],
     [ 2, 3, 2, 2 ]]
k = 3
 
print(calcProbability(M, k))
 
# This code is contributed
# by mohit kumar 29


C#




// C# implementation of the above approach
using System;
 
class GFG
{
    static int n = 4 ;
    static int m = 4 ;
 
    // Function to calculate probability
    static float calcProbability(int[,] M, int k)
    {
        // declare dp[][] and sum[]
        float[,] dp = new float[m,n] ;
        float[] sum = new float[n];
     
        // precalculate the first row
        for (int j = 0; j < n; j++)
        {
            dp[0, j] = M[0, j];
            sum[0] = sum[0] + dp[0, j];
        }
     
        // calculate the probability for
        // each element and update dp table
        for (int i = 1; i < m; i++)
        {
            for (int j = 0; j < n; j++)
            {
                dp[i, j] += dp[i - 1,j] / sum[i - 1] +
                            M[i, j];
                sum[i] += dp[i, j];
            }
        }
     
        // return result
        return dp[n - 1,k - 1] / sum[n - 1];
    }
     
    // Driver code
    public static void Main()
    {
        int[,] M = { { 1, 1, 0, 3 },
                    { 2, 3, 2, 3 },
                    { 9, 3, 0, 2 },
                    { 2, 3, 2, 2 } };
        int k = 3;
        Console.Write(calcProbability(M, k));
    }
}
 
// This code is contributed by Ita_c.


PHP




<?php
// PHP implementation of the above approach
 
// Function to calculate probability
function calcProbability($M, $k)
{
    $m = 4; $n = 4;
     
    // declare dp[][] and sum[]
    $dp = array();
    $sum = array();
 
    // precalculate the first row
    for ($j = 0; $j < $n; $j++)
    {
        $dp[0][$j] = $M[0][$j];
        $sum[0] += $dp[0][$j];
    }
 
    // calculate the probability for
    // each element and update dp table
    for ($i = 1; $i < $m; $i++)
    {
        for ($j = 0; $j <$n; $j++)
        {
            $dp[$i][$j] += $dp[$i - 1][$j] /
                           $sum[$i - 1] + $M[$i][$j];
            $sum[$i] += $dp[$i][$j];
        }
    }
 
    // return result
    return $dp[$n - 1][$k - 1] / $sum[$n - 1];
}
 
// Driver code
$M = array(array(1, 1, 0, 3),
           array(2, 3, 2, 3),
           array(9, 3, 0, 2),
           array(2, 3, 2, 2));
$k = 3;
 
echo calcProbability($M, $k);
 
// This code is contributed
// by Arnub Kundu
?>


Javascript




<script>
// Javascript implementation of the above approach
     
    let n = 4 ;
    let m = 4 ;
     
    // Function to calculate probability
    function calcProbability(M,k)
    {
        // declare dp[][] and sum[]
        let dp = new Array(m) ;
        let sum = new Array(n);
          for(let i = 0; i < dp.length; i++)
        {
            dp[i] = new Array(n);
            for(let j = 0; j < n; j++)
            {
                dp[i][j] = 0;
            }
        }
         
        for(let i = 0; i < n; i++)
        {
            sum[i] = 0;
        }
         
        // precalculate the first row
        for (let j = 0; j < n; j++)
        {
            dp[0][j] = M[0][j];
            sum[0] = sum[0] + dp[0][j];
        }
       
        // calculate the probability for
        // each element and update dp table
        for (let i = 1; i < m; i++)
        {
            for (let j = 0; j < n; j++)
            {
                dp[i][j] += dp[i - 1][j] / sum[i - 1] +
                            M[i][j];
                sum[i] += dp[i][j];
            }
        }
       
        // return result
        return dp[n - 1][k - 1] / sum[n - 1];
    }
     
    // Driver code
    let M = [[ 1, 1, 0, 3 ],
     [ 2, 3, 2, 3 ],
     [ 9, 3, 0, 2 ],
     [ 2, 3, 2, 2 ]];
      
    let k = 3;
    document.write(calcProbability(M, k));
      
// This code is contributed by rag2127
</script>


Output

0.201212
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments