Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIFind Prime numbers in a 2D Array (Matrix)

Find Prime numbers in a 2D Array (Matrix)

Given a 2d array mat[][], the task is to find and print the prime numbers along with their position (1-based indexing) in this 2d array.

Examples:

Input: mat[][] = {{1, 2}, {2, 1}}  

Output: 

1 2 2

2 1 2

Explanation:  First prime is at position row 1 and column 2 and the value is 2

Second prime is at position row 2 and column 1 and the value is 2

Input: mat[][] = {{1, 1}, {1, 1}}  

Output: -1

Explanation:  There is no prime number in this 2d array

 

Naive Approach: The basic idea is to traverse the 2d array and for each number, check whether it is prime or not. If it is prime, print the position and the value for each found prime number.
Time Complexity: O(NM*sqrt(X)), where N*M is the size of the matrix and X is the largest element in the matrix
Auxiliary Space: O(1) 

Efficient Approach: We can efficiently check if the number is prime or not using sieve. Then traverse the 2d array and simply check if the number is prime or not in O(1). 

Follow the below steps for implementing this approach:

  • Find the maximum element from the matrix and store it in a variable maxNum.
  • Now find the prime numbers from 1 to maxNum using sieve of eratosthenes and store the result in array prime[].
  • Now traverse the matrix and for each number check if it is a prime or not using the prime[] array.
  • For each prime number in matrix print its position (row, column) and value.

Below is the implementation of the above approach:

C++




// C++ code to implement the above approach
#include <bits/stdc++.h>
using namespace std;
 
#define MAXN 100001
bool prime[MAXN];
 
// Function to find prime numbers using sieve
void SieveOfEratosthenes()
{
    int n = MAXN - 1;
 
    // Create a boolean array
    // "prime[0..n]" and initialize
    // all entries it as true.
    // A value in prime[i] will
    // finally be false if i is
    // Not a prime, else true.
    memset(prime, true, sizeof(prime));
    prime[0] = false;
    prime[1] = false;
 
    for (int p = 2; p * p <= n; p++) {
        // If prime[p] is not changed,
        // then it is a prime
        if (prime[p] == true) {
            // Update all multiples
            // of p greater than or
            // equal to the square of it
            // numbers which are multiple
            // of p and are less than p^2
            // are already been marked.
            for (int i = p * p; i <= n; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to print the position and
// value of the primes in given matrix
void printPrimes(vector<vector<int> >& arr, int n)
{
    // Traverse the matrix
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
 
            // Check if the element is prime
            // or not in O(1)
            if (prime[arr[i][j]] == true) {
                // Print the position and value
                // if found true
                cout << i + 1 << " " << j + 1 << " "
                     << arr[i][j] << endl;
            }
        }
    }
}
 
// Driver Code
int main()
{
    int N = 2;
    vector<vector<int> > arr;
    vector<int> temp(N, 2);
    temp[0] = 1;
    temp[1] = 2;
    arr.push_back(temp);
    temp[0] = 2;
    temp[1] = 1;
    arr.push_back(temp);
 
    // Precomputing prime numbers using sieve
    SieveOfEratosthenes();
 
    // Find and print prime numbers
    // present in the matrix
    printPrimes(arr, N);
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG {
 
    static int MAXN = 100001;
    static boolean prime[] = new boolean[MAXN];
 
    // Function to find prime numbers using sieve
    static void SieveOfEratosthenes()
    {
        int n = MAXN - 1;
        Arrays.fill(prime, true);
       
        // Create a boolean array
        // "prime[0..n]" and initialize
        // all entries it as true.
        // A value in prime[i] will
        // finally be false if i is
        // Not a prime, else true.
        prime[0] = false;
        prime[1] = false;
 
        for (int p = 2; p * p <= n; p++) {
            // If prime[p] is not changed,
            // then it is a prime
            if (prime[p] == true) {
                // Update all multiples
                // of p greater than or
                // equal to the square of it
                // numbers which are multiple
                // of p and are less than p^2
                // are already been marked.
                for (int i = p * p; i <= n; i = i + p)
                    prime[i] = false;
            }
        }
    }
 
    // Function to print the position and
    // value of the primes in given matrix
    static void printPrimes(int[][] arr, int n)
    {
        // Traverse the matrix
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
 
                // Check if the element is prime
                // or not in O(1)
                if (prime[arr[i][j]] == true) {
                    // Print the position and value
                    // if found true
                    System.out.print((i + 1));
                    System.out.print(" ");
                    System.out.print(j + 1);
                    System.out.print(" ");
                    System.out.print(arr[i][j]);
                    System.out.println();
                }
            }
        }
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int N = 2;
        int arr[][] = new int[N][N];
 
        arr[0][0] = 1;
        arr[0][1] = 2;
        arr[1][0] = 2;
        arr[1][1] = 1;
 
        // Precomputing prime numbers using sieve
        SieveOfEratosthenes();
 
        // Find and print prime numbers
        // present in the matrix
        printPrimes(arr, N);
    }
}
 
// This code is contributed by Potta Lokesh


Python3




# python code to implement the above approach
import math
MAXN = 100001
prime = [True for _ in range(MAXN)]
 
# Function to find prime numbers using sieve
def SieveOfEratosthenes():
    global prime
 
    n = MAXN - 1
 
    # Create a boolean array
    # "prime[0..n]" and initialize
    # all entries it as true.
    # A value in prime[i] will
    # finally be false if i is
    # Not a prime, else true.
    prime[0] = False
    prime[1] = False
 
    for p in range(2, int(math.sqrt(n)) + 1):
       
                # If prime[p] is not changed,
                # then it is a prime
        if (prime[p] == True):
           
           # Update all multiples
           # of p greater than or
           # equal to the square of it
           # numbers which are multiple
           # of p and are less than p^2
           # are already been marked.
            for i in range(p*p, n+1, p):
                prime[i] = False
 
# Function to print the position and
# value of the primes in given matrix
def printPrimes(arr, n):
 
        # Traverse the matrix
    for i in range(0, n):
        for j in range(0, n):
 
                        # Check if the element is prime
                        # or not in O(1)
            if (prime[arr[i][j]] == True):
               
                # Print the position and value
                # if found true
                print(f"{i + 1} {j + 1} {arr[i][j]}")
 
# Driver Code
if __name__ == "__main__":
 
    N = 2
    arr = []
    temp = [2 for _ in range(N)]
     
    temp[0] = 1
    temp[1] = 2
    arr.append(temp.copy())
    temp[0] = 2
    temp[1] = 1
    arr.append(temp.copy())
 
    # Precomputing prime numbers using sieve
    SieveOfEratosthenes()
 
    # Find and print prime numbers
    # present in the matrix
    printPrimes(arr, N)
 
    # This code is contributed by rakeshsahni


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
class GFG {
 
    static int MAXN = 100001;
    static bool[] prime = new bool[MAXN];
 
    // Function to find prime numbers using sieve
    static void SieveOfEratosthenes()
    {
        int n = MAXN - 1;
        Array.Fill(prime, true);
       
        // Create a boolean array
        // "prime[0..n]" and initialize
        // all entries it as true.
        // A value in prime[i] will
        // finally be false if i is
        // Not a prime, else true.
        prime[0] = false;
        prime[1] = false;
 
        for (int p = 2; p * p <= n; p++) {
            // If prime[p] is not changed,
            // then it is a prime
            if (prime[p] == true) {
                // Update all multiples
                // of p greater than or
                // equal to the square of it
                // numbers which are multiple
                // of p and are less than p^2
                // are already been marked.
                for (int i = p * p; i <= n; i = i + p)
                    prime[i] = false;
            }
        }
    }
 
    // Function to print the position and
    // value of the primes in given matrix
    static void printPrimes(int[,] arr, int n)
    {
        // Traverse the matrix
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
 
                // Check if the element is prime
                // or not in O(1)
                if (prime[arr[i,j]] == true) {
                    // Print the position and value
                    // if found true
                    Console.Write((i + 1));
                    Console.Write(" ");
                    Console.Write(j + 1);
                    Console.Write(" ");
                    Console.Write(arr[i,j]);
                    Console.WriteLine();
                }
            }
        }
    }
 
    // Driver Code
    public static void Main(String[] args)
    {
        int N = 2;
        int[,] arr = new int[N,N];
 
        arr[0,0] = 1;
        arr[0,1] = 2;
        arr[1,0] = 2;
        arr[1,1] = 1;
 
        // Precomputing prime numbers using sieve
        SieveOfEratosthenes();
 
        // Find and print prime numbers
        // present in the matrix
        printPrimes(arr, N);
    }
}
 
// This code is contributed by Saurabh Jaiswal


Javascript




<script>
 
       // JavaScript Program to implement
       // the above approach
 
 
       let MAXN = 100001
       let prime = new Array(MAXN).fill(true);
 
       // Function to find prime numbers using sieve
       function SieveOfEratosthenes() {
           let n = MAXN - 1;
 
           // Create a boolean array
           // "prime[0..n]" and initialize
           // all entries it as true.
           // A value in prime[i] will
           // finally be false if i is
           // Not a prime, else true.
 
           prime[0] = false;
           prime[1] = false;
 
           for (let p = 2; p * p <= n; p++) {
               // If prime[p] is not changed,
               // then it is a prime
               if (prime[p] == true) {
                   // Update all multiples
                   // of p greater than or
                   // equal to the square of it
                   // numbers which are multiple
                   // of p and are less than p^2
                   // are already been marked.
                   for (let i = p * p; i <= n; i = i + p)
                       prime[i] = false;
               }
           }
       }
 
       // Function to print the position and
       // value of the primes in given matrix
       function printPrimes(arr, n) {
           // Traverse the matrix
           for (let i = 0; i < n; i++) {
               for (let j = 0; j < n; j++) {
 
                   // Check if the element is prime
                   // or not in O(1)
                   if (prime[arr[i][j]] == true) {
                       // Print the position and value
                       // if found true
                       document.write((i + 1) + " " + (j + 1) + " "
                           + (arr[i][j]) + "<br>");
                   }
               }
           }
       }
 
       // Driver Code
 
       let N = 2;
       let arr = new Array(N);
       let temp = [1, 2]
       arr[0] = temp;
       let temp1 = [2, 1]
       arr[1] = temp1;
 
       // Precomputing prime numbers using sieve
       SieveOfEratosthenes();
 
       // Find and print prime numbers
       // present in the matrix
       printPrimes(arr, N);
 
 
   // This code is contributed by Potta Lokesh
   </script>


 
 

Output

1 2 2
2 1 2

 

Time Complexity: O(N*M) where N*M is the size of matrix.
Auxiliary Space: O(maxNum) where maxNum is the largest element in the matrix. 

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments