Tuesday, January 7, 2025
Google search engine
HomeData Modelling & AIFind partitions to maximize even and odd count sum in left and...

Find partitions to maximize even and odd count sum in left and right part

Given an array arr[] having N positive integers, the task is to find all the indices i (1 ≤ i ≤ N – 1) such that, the sum of the count of even numbers in the left subarray [0, i – 1] and the count of odd numbers in the right subarray [i, n – 1] is the maximum among all i’s.

Example:

Input: arr[] = {1, 3, 4, 5, 6}
Output: 1 3
Explanation: Count of even integers in the range 0 to 0 is 0 and count of odd integers in the range 1 to 4 is 2. 
Total = 0 + 2 = 2 (which is maximum for all i’s).
Count of even integers in the range 0 to 2 is 1 and count of odd integers in the range 3 to 4 is 1. 
Total = 1 + 1 = 2 (which is maximum for all i’s).

Input: arr[] = {1, 2, 3, 4, 5, 6, 7}
Output: 2 4 6
Explanation: Count of even integers in the range 0 to 1 is 1 and count of odd integer in the range 2 to 6 is 3. 
Total = 1 + 3 = 4 (which is maximum for all i’s). 
Count of even integers in the range 0 to 3 is 2 and Count of odd integers in the range 4 to 6 is 2. 
Total = 2 + 2 = 4 (which is maximum for all i’s).
Count of even integers in the range 0 to 5 is 3 and Count of odd integers in the range 6 to 6 is 1. 
Total = 3 + 1 = 4 (which is maximum for all i’s).

 

Naive Approach: For each index check number of even integers to the left and the number of odd integers to the right. Find the maximum value among these and the indices which result in the maximum value. Follow the steps mentioned below:

  • For each index i:
    • Iterate in the left subarray [0, i – 1] using a nested loop and count the number of even integers in the left subarray.
    • Similarly, in another nested loop, iterate in the right subarray [i, N – 1] and count the number of odd integers in this subarray.
  • Use an integer variable that will keep the track of the maximum sum of counts.
  • Compare the sum with the previous max sum
    • If the current sum is greater than the previous one then update the max sum and put i in the result array.
    • if the current sum is equal to the previous maximum one then in the previous result array push this index i.
  • Return the resultant vector.

Below is the implementation of the above approach

C++




// C++ code to implement the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the answer vector
vector<int> solve(vector<int>& vect)
{
    // To keep the track
    // of final answer
    int maximumSum = 0;
 
    // Size of nums
    int n = vect.size();
 
    // It keeps the track
    // of final answer
    vector<int> ans;
   
    // Iterate over the indices
    for (int i = 1; i < n; i++) {
 
        // Stores the count of even
        // numbers in the left subarray
        int countEven = 0;
 
        // Iterate in the left subarray
        for (int j = i - 1; j >= 0; j--) {
            if (vect[j] % 2 == 0)
                countEven++;
        }
 
        // Stores the count of even
        // numbers in the left subarray
        int countOdd = 0;
 
        // Iterate in the right subarray
        for (int j = i; j < n; j++) {
            if (vect[j] % 2 == 1)
                countOdd++;
        }
 
        // Stores the sum for current i
        int sum = countEven + countOdd;
 
        // If current score
        // is greater than
        // previous then push
        // in the ans array.
        if (sum > maximumSum) {
            ans = { i };
            maximumSum = sum;
        }
 
        // If sum is equal to
        // maximum sum then
        // consider the index i
        // with previous max
        else if (sum == maximumSum)
            ans.push_back(i);
    }
    return ans;
}
 
// Function to print answer
void print(vector<int>& ans)
{
    int n = ans.size();
    for (int i = 0; i < n; i++)
        cout << ans[i] << ' ';
}
 
// Driver code
int main()
{
    // Given vector
    vector<int> vect = { 1, 2, 3, 4, 5, 6, 7 };
     
    // Function call
    vector<int> ans = solve(vect);
    print(ans);
    return 0;
}


Java




// Java code to implement the approach
import java.io.*;
import java.util.*;
 
class GFG
{
 
  // Function to find the answer arraylist
  public static ArrayList<Integer> solve(int vect[])
  {
 
    // To keep the track
    // of final answer
    int maximumSum = 0;
 
    // Size of nums
    int n = vect.length;
 
    // It keeps the track
    // of final answer
    ArrayList<Integer> ans = new ArrayList<Integer>();
 
    // Iterate over the indices
    for (int i = 1; i < n; i++) {
 
      // Stores the count of even
      // numbers in the left subarray
      int countEven = 0;
 
      // Iterate in the left subarray
      for (int j = i - 1; j >= 0; j--) {
        if (vect[j] % 2 == 0)
          countEven++;
      }
 
      // Stores the count of even
      // numbers in the left subarray
      int countOdd = 0;
 
      // Iterate in the right subarray
      for (int j = i; j < n; j++) {
        if (vect[j] % 2 == 1)
          countOdd++;
      }
 
      // Stores the sum for current i
      int sum = countEven + countOdd;
 
      // If current score
      // is greater than
      // previous then push
      // in the ans array.
      if (sum > maximumSum) {
        ans.clear();
        ans.add(i);
        maximumSum = sum;
      }
 
      // If sum is equal to
      // maximum sum then
      // consider the index i
      // with previous max
      else if (sum == maximumSum)
        ans.add(i);
    }
    return ans;
  }
 
  // Function to print answer
  public static void print(ArrayList<Integer> ans)
  {
    int n = ans.size();
    for (int i = 0; i < n; i++)
      System.out.print(ans.get(i) + " ");
  }
 
  public static void main(String[] args)
  {
    int vect[] = { 1, 2, 3, 4, 5, 6, 7 };
 
    // Function call
    ArrayList<Integer> ans = solve(vect);
    print(ans);
  }
}
 
// This code is contributed by Rohit Pradhan


Python3




# python3 code to implement the approach
 
# Function to find the answer vector
def solve(vect):
 
    # To keep the track
    # of final answer
    maximumSum = 0
 
    # Size of nums
    n = len(vect)
 
    # It keeps the track
    # of final answer
    ans = []
 
    # Iterate over the indices
    for i in range(1, n):
 
        # Stores the count of even
        # numbers in the left subarray
        countEven = 0
 
        # Iterate in the left subarray
        for j in range(i-1, -1, -1):
            if (vect[j] % 2 == 0):
                countEven += 1
 
        # Stores the count of even
        # numbers in the left subarray
        countOdd = 0
 
        # Iterate in the right subarray
        for j in range(i, n):
            if (vect[j] % 2 == 1):
                countOdd += 1
 
        # Stores the sum for current i
        sum = countEven + countOdd
 
        # If current score
        # is greater than
        # previous then push
        # in the ans array.
        if (sum > maximumSum):
            ans = [i]
            maximumSum = sum
 
        # If sum is equal to
        # maximum sum then
        # consider the index i
        # with previous max
        elif (sum == maximumSum):
            ans.append(i)
 
    return ans
 
# Function to print answer
def pnt(ans):
 
    n = len(ans)
    for i in range(0, n):
        print(ans[i], end=' ')
 
# Driver code
if __name__ == "__main__":
 
    # Given vector
    vect = [1, 2, 3, 4, 5, 6, 7]
 
    # Function call
    ans = solve(vect)
    pnt(ans)
 
    # This code is contributed by rakeshsahni


C#




// C# code to implement the approach
using System;
using System.Collections;
 
class GFG {
 
  // Function to find the answer vector
  static ArrayList solve(ArrayList vect)
  {
 
    // To keep the track
    // of final answer
    int maximumSum = 0;
 
    // Size of nums
    int n = vect.Count;
 
    // It keeps the track
    // of final answer
    ArrayList ans = new ArrayList();
 
    // Iterate over the indices
    for (int i = 1; i < n; i++) {
 
      // Stores the count of even
      // numbers in the left subarray
      int countEven = 0;
 
      // Iterate in the left subarray
      for (int j = i - 1; j >= 0; j--) {
        if ((int)vect[j] % 2 == 0)
          countEven++;
      }
 
      // Stores the count of even
      // numbers in the left subarray
      int countOdd = 0;
 
      // Iterate in the right subarray
      for (int j = i; j < n; j++) {
        if ((int)vect[j] % 2 == 1)
          countOdd++;
      }
 
      // Stores the sum for current i
      int sum = countEven + countOdd;
 
      // If current score
      // is greater than
      // previous then push
      // in the ans array.
      if (sum > maximumSum) {
        ans.Clear();
        ans.Add(i);
        maximumSum = sum;
      }
 
      // If sum is equal to
      // maximum sum then
      // consider the index i
      // with previous max
      else if (sum == maximumSum)
        ans.Add(i);
    }
    return ans;
  }
 
  // Function to print answer
  static void print(ArrayList ans)
  {
    int n = ans.Count;
    for (int i = 0; i < n; i++)
      Console.Write(ans[i] + " ");
  }
 
  // Driver code
  public static void Main()
  {
     
    // Given vector
    ArrayList vect = new ArrayList();
 
    vect.Add(1);
    vect.Add(2);
    vect.Add(3);
    vect.Add(4);
    vect.Add(5);
    vect.Add(6);
    vect.Add(7);
 
    // Function call
    ArrayList ans = solve(vect);
    print(ans);
  }
}
 
// This code is contributed by Samim Hossain Mondal.


Javascript




<script>
       // JavaScript code for the above approach
 
       // Function to find the answer vector
       function solve(vect)
       {
        
           // To keep the track
           // of final answer
           let maximumSum = 0;
 
           // Size of nums
           let n = vect.length;
 
           // It keeps the track
           // of final answer
           let ans = [];
 
           // Iterate over the indices
           for (let i = 1; i < n; i++) {
 
               // Stores the count of even
               // numbers in the left subarray
               let countEven = 0;
 
               // Iterate in the left subarray
               for (let j = i - 1; j >= 0; j--) {
                   if (vect[j] % 2 == 0)
                       countEven++;
               }
 
               // Stores the count of even
               // numbers in the left subarray
               let countOdd = 0;
 
               // Iterate in the right subarray
               for (let j = i; j < n; j++) {
                   if (vect[j] % 2 == 1)
                       countOdd++;
               }
 
               // Stores the sum for current i
               let sum = countEven + countOdd;
 
               // If current score
               // is greater than
               // previous then push
               // in the ans array.
               if (sum > maximumSum) {
                   ans = [i];
                   maximumSum = sum;
               }
 
               // If sum is equal to
               // maximum sum then
               // consider the index i
               // with previous max
               else if (sum == maximumSum)
                   ans.push(i);
           }
           return ans;
       }
 
       // Function to print answer
       function print(ans) {
           let n = ans.length;
           for (let i = 0; i < n; i++)
               document.write(ans[i] + ' ')
       }
 
       // Driver code
 
       // Given vector
       let vect = [1, 2, 3, 4, 5, 6, 7];
 
       // Function call
       let ans = solve(vect);
       print(ans);
 
    // This code is contributed by Potta Lokesh
   </script>


Output

2 4 6 

Time Complexity: O(N2)
Auxiliary Space: O(1)

Efficient Approach: We can use the prefix sum technique to trade off the time. The approach is discussed below:
 

  • To keep the track of the count of even elements from 0 to i – 1 for any i, declare an array of countEven. Initialize it with zeroes initially.
  • Also, to keep the track of the count of odd elements from i to n – 1 for any i, declare an array of countOdd. Initialize it with zeroes initially.
  • Then for each i the sum will be countEven[i-1]+countOdd[i-1]
  • Compare the sum with previous max sum
    • If current sum is greater than the previous one then update the max sum and put i in the result array .
    • if current sum is equal to  the previous max one then in previous result array push this index i.
  • Return the resultant vector after complete traversal.

 

Below is the implementation of the above approach.

 

C++




// C++ code to implement the approach
#include <bits/stdc++.h>
using namespace std;
 
vector<int> solve(vector<int>& vect)
{
    // The size of the vector
    int n = vect.size();
 
    // It keeps the track of the maximumSum
    int maximumSum = 0;
 
    // Initialize vectors
    vector<int> countEven(n, 0);
    vector<int> countOdd(n, 0);
 
    // Traverse and update countEven vector
    for (int i = 0; i < n; i++) {
        if (i == 0) {
            if (vect[i] % 2 == 0)
                countEven[i] = 1;
            else
                countEven[i] = 0;
        }
        else {
            if (vect[i] % 2 == 0)
                countEven[i] = countEven[i - 1] + 1;
            else
                countEven[i] = countEven[i - 1];
        }
    }
 
    // Traverse and update countOdd vector
    for (int i = n - 1; i >= 0; i--) {
        if (i == n - 1) {
            if (vect[i] % 2 == 1)
                countOdd[i] = 1;
            else
                countOdd[i] = 0;
        }
        else {
            if (vect[i] % 2 == 1)
                countOdd[i] = countOdd[i + 1] + 1;
            else
                countOdd[i] = countOdd[i + 1];
        }
    }
 
    // ans will store the indices
    vector<int> ans;
    for (int i = 1; i < n; i++) {
 
        // Calculate current sum
        int sum = countEven[i - 1] + countOdd[i];
        maximumSum = max(maximumSum, sum);
    }
 
    // Iterate over the indices
    for (int i = 1; i < n; i++) {
 
        int sum = countEven[i - 1] + countOdd[i];
 
        // If the value of sum is
        // equal to maximumSum then
        // consider the index i
        if (sum == maximumSum)
            ans.push_back(i);
    }
 
    // Return the ans vector
    return ans;
}
 
// Function to print ans elements
void print(vector<int>& ans)
{
    // Number of elements in the answer vector
    int n = ans.size();
 
    // Print values
    for (int i = 0; i < n; i++)
        cout << ans[i] << ' ';
}
 
// Driver code
int main()
{
    // Input vector
    vector<int> nums = { 1, 2, 3, 4, 5, 6, 7 };
 
    // Calling solve function
    vector<int> ans = solve(nums);
 
    // Print ans elements
    print(ans);
    return 0;
}


Java




// JAVA code to implement the approach
import java.util.*;
class GFG {
    public static ArrayList<Integer>
    solve(ArrayList<Integer> vect)
    {
       
        // The size of the vector
        int n = vect.size();
 
        // It keeps the track of the maximumSum
        int maximumSum = 0;
 
        // Initialize vectors
        int[] countEven = new int[n];
        for (int i = 0; i < n; i++) {
            countEven[i] = 0;
        }
        int[] countOdd = new int[n];
        for (int i = 0; i < n; i++) {
            countOdd[i] = 0;
        }
 
        // Traverse and update countEven vector
        for (int i = 0; i < n; i++) {
            if (i == 0) {
                if (vect.get(i) % 2 == 0)
                    countEven[i] = 1;
                else
                    countEven[i] = 0;
            }
            else {
                if (vect.get(i) % 2 == 0)
                    countEven[i] = countEven[i - 1] + 1;
                else
                    countEven[i] = countEven[i - 1];
            }
        }
 
        // Traverse and update countOdd vector
        for (int i = n - 1; i >= 0; i--) {
            if (i == n - 1) {
                if (vect.get(i) % 2 == 1)
                    countOdd[i] = 1;
                else
                    countOdd[i] = 0;
            }
            else {
                if (vect.get(i) % 2 == 1)
                    countOdd[i] = countOdd[i + 1] + 1;
                else
                    countOdd[i] = countOdd[i + 1];
            }
        }
 
        // ans will store the indices
        ArrayList<Integer> ans = new ArrayList<>();
        for (int i = 1; i < n; i++) {
 
            // Calculate current sum
            int sum = countEven[i - 1] + countOdd[i];
            maximumSum = Math.max(maximumSum, sum);
        }
 
        // Iterate over the indices
        for (int i = 1; i < n; i++) {
 
            int sum = countEven[i - 1] + countOdd[i];
 
            // If the value of sum is
            // equal to maximumSum then
            // consider the index i
            if (sum == maximumSum)
 
                ans.add(i);
        }
 
        // Return the ans vector
        return ans;
    }
 
    // Function to print ans elements
    public static void print(ArrayList<Integer> ans)
    {
        // Number of elements in the answer vector
        int n = ans.size();
       
        // Print values
        for (int i = 0; i < n; i++)
            System.out.print(ans.get(i) + " ");
    }
 
    // Driver code
    public static void main(String[] args)
    {
        // Input vector
        ArrayList<Integer> nums = new ArrayList<Integer>(
            Arrays.asList(1, 2, 3, 4, 5, 6, 7));
 
        // Calling solve function
        ArrayList<Integer> ans = solve(nums);
 
        // Print ans elements
        print(ans);
    }
}
 
// This code is contributed by Taranpreet


Python3




# C++ code to implement the approach
def solve(vect):
    # The size of the vector
    n = len(vect)
 
    # It keeps the track of the maximumSum
    maximumSum = 0
 
    # Initialize vectors
    countEven = [0]*n
    countOdd = [0]*n
 
    # Traverse and update countEven vector
    for i in range(n):
        if (i == 0):
            if (vect[i] % 2 == 0):
                countEven[i] = 1
            else:
                countEven[i] = 0
 
        else:
            if (vect[i] % 2 == 0):
                countEven[i] = countEven[i - 1] + 1
            else:
                countEven[i] = countEven[i - 1]
 
    # Traverse and update countOdd vector
    for i in range(n-1, -1, -1):
        if (i == n - 1):
            if (vect[i] % 2 == 1):
                countOdd[i] = 1
            else:
                countOdd[i] = 0
 
        else:
            if (vect[i] % 2 == 1):
                countOdd[i] = countOdd[i + 1] + 1
            else:
                countOdd[i] = countOdd[i + 1]
    # ans will store the indices
    ans = []
    for i in range(1, n):
        # Calculate current sum
        sum = countEven[i - 1] + countOdd[i]
        maximumSum = max(maximumSum, sum)
 
    # Iterate over the indices
    for i in range(1, n):
        sum = countEven[i - 1] + countOdd[i]
 
        # If the value of sum is
        # equal to maximumSum then
        # consider the index i
        if (sum == maximumSum):
            ans.append(i)
 
    # Return the ans vector
    return ans
 
# Function to print ans elements
def printAns(ans):
    # Number of elements in the answer vector
    n = len(ans)
 
    # Print values
    for i in range(n):
        print(ans[i], end=' ')
 
 
# Driver code
    # Input vector
nums = [1, 2, 3, 4, 5, 6, 7]
 
# Calling solve function
ans = solve(nums)
printAns(ans)
 
# This code is contributed by vikkycirus.


C#




using System;
using System.Collections.Generic;
 
class GFG
{
    public static List<int> solve(List<int> vect)
    {
        // The size of the vector
        int n = vect.Count;
 
        // It keeps the track of the maximumSum
        int maximumSum = 0;
 
        // Initialize vectors
        int[] countEven = new int[n];
        for (int i = 0; i < n; i++)
        {
            countEven[i] = 0;
        }
        int[] countOdd = new int[n];
        for (int i = 0; i < n; i++)
        {
            countOdd[i] = 0;
        }
 
        // Traverse and update countEven vector
        for (int i = 0; i < n; i++)
        {
            if (i == 0)
            {
                if (vect[i] % 2 == 0)
                    countEven[i] = 1;
                else
                    countEven[i] = 0;
            }
            else
            {
                if (vect[i] % 2 == 0)
                    countEven[i] = countEven[i - 1] + 1;
                else
                    countEven[i] = countEven[i - 1];
            }
        }
 
        // Traverse and update countOdd vector
        for (int i = n - 1; i >= 0; i--)
        {
            if (i == n - 1)
            {
                if (vect[i] % 2 == 1)
                    countOdd[i] = 1;
                else
                    countOdd[i] = 0;
            }
            else
            {
                if (vect[i] % 2 == 1)
                    countOdd[i] = countOdd[i + 1] + 1;
                else
                    countOdd[i] = countOdd[i + 1];
            }
        }
 
        // ans will store the indices
        List<int> ans = new List<int>();
        for (int i = 1; i < n; i++)
        {
 
            // Calculate current sum
            int sum = countEven[i - 1] + countOdd[i];
            maximumSum = Math.Max(maximumSum, sum);
        }
 
        // Iterate over the indices
        for (int i = 1; i < n; i++)
        {
 
            int sum = countEven[i - 1] + countOdd[i];
 
            // If the value of sum is
            // equal to maximumSum then
            // consider the index i
            if (sum == maximumSum)
 
                ans.Add(i);
        }
 
        // Return the ans vector
        return ans;
    }
 
    // Function to print ans elements
    public static void print(List<int> ans)
    {
        // Number of elements in the answer vector
        int n = ans.Count;
 
        // Print values
        
    for (int i = 0; i < n; i++)
        Console.Write(ans[i] + " ");
}
public static void Main(string[] args)
{
// Input list
List<int> nums = new List<int> { 1, 2, 3, 4, 5, 6, 7 };
 
    // Calling Solve function
    List<int> ans = solve(nums);
 
    // Print ans elements
    print(ans);
}
}


Javascript




function solve(vect) {
  // The size of the vector
  const n = vect.length;
 
  // It keeps the track of the maximumSum
  let maximumSum = 0;
 
  // Initialize arrays
  const countEven = new Array(n).fill(0);
  const countOdd = new Array(n).fill(0);
 
  // Traverse and update countEven array
  for (let i = 0; i < n; i++) {
    if (i == 0) {
      if (vect[i] % 2 == 0)
        countEven[i] = 1;
      else
        countEven[i] = 0;
    } else {
      if (vect[i] % 2 == 0)
        countEven[i] = countEven[i - 1] + 1;
      else
        countEven[i] = countEven[i - 1];
    }
  }
 
  // Traverse and update countOdd array
  for (let i = n - 1; i >= 0; i--) {
    if (i == n - 1) {
      if (vect[i] % 2 == 1)
        countOdd[i] = 1;
      else
        countOdd[i] = 0;
    } else {
      if (vect[i] % 2 == 1)
        countOdd[i] = countOdd[i + 1] + 1;
      else
        countOdd[i] = countOdd[i + 1];
    }
  }
 
  // ans will store the indices
  const ans = [];
  for (let i = 1; i < n; i++) {
 
    // Calculate current sum
    const sum = countEven[i - 1] + countOdd[i];
    maximumSum = Math.max(maximumSum, sum);
  }
 
  // Iterate over the indices
  for (let i = 1; i < n; i++) {
 
    const sum = countEven[i - 1] + countOdd[i];
 
    // If the value of sum is
    // equal to maximumSum then
    // consider the index i
    if (sum == maximumSum)
      ans.push(i);
  }
 
  // Return the ans array
  return ans;
}
 
// Function to print ans elements
function print(ans) {
  // Number of elements in the answer array
  const n = ans.length;
 
  // Print values
  for (let i = 0; i < n; i++)
    console.log(ans[i] + ' ');
}
 
// Driver code
const nums = [1, 2, 3, 4, 5, 6, 7];
 
// Calling solve function
const ans = solve(nums);
 
// Print ans elements
print(ans);


Output

2 4 6 

Time Complexity: O(N)
Auxiliary Space: O(N)

Last Updated :
16 Feb, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments