Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIFind palindromic path of given length K in a complete Binary Weighted...

Find palindromic path of given length K in a complete Binary Weighted Graph

Given a complete directed graph having N vertices, whose edges weighs ‘1’ or ‘0’, the task is to find a path of length exactly K which is a palindrome. Print “YES” if possible and then the path, otherwise print “NO“. 

Example: 

Input: N = 3, K = 4
edges[] =  {{{1, 2}, ‘1’}, {{1, 3}, ‘1’}, {{2, 1}, ‘1’}, {{2, 3}, ‘1’}, {{3, 1}, ‘0’}, {{3, 2}, ‘0’}}
Output
YES
2 1  2 1 2
Explanation

The path followed is “1111” which is palindrome.

Input: N = 2, K = 6
edges[] = { { 1, 2 }, ‘1’ }, { { 2, 1 }, ‘0’ } 
Output: NO

Approach: The above problem can be solved by considering different cases and constructing the respective answers. Follow the below steps to solve the problem:

  1. If K is odd:
    • There exists a palindromic path in every case if K is odd.
    • It can be constructed by selecting any two nodes and looping through them K times, For example, for  K = 5:  “00000”, “11111”, “10101”, “01010”.
  2. If K is even:
    • Now the problem can be divided into two cases:
      • If Two nodes (i, j) exists such that the weight of edge i->j is equal to the weight of edge j->i. Then the answer can be constructed by looping through them until path length K is achieved.
      • Otherwise, if there exist three different nodes (i, j, k) such that the weight of edge i->j is equal to the weight of edge j->k. Then these three nodes can be placed in the centre of the path, like …i->j->i->j->k->j->k…, to create an even length palindrome.
  3. Print the answer according to the above observation.

Below is the implementation of the above approach:

C++




// C++ implementation for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to print the left path
void printLeftPath(int i, int j, int K)
{
    if (K & 1) {
        // j->i->j->i->j->k->j->k->j
        for (int p = 0; p < K; p++) {
            if (p & 1) {
                cout << i << " ";
            }
            else {
                cout << j << " ";
            }
        }
    }
    else {
        // i->j->i->j->k->j->k
        for (int p = 0; p < K; p++) {
            if (p & 1) {
                cout << j << " ";
            }
            else {
                cout << i << " ";
            }
        }
    }
}
 
// Function to print the right path
void printRightPath(int j, int k, int K)
{
    if (K & 1) {
        // j->i->j->i->j->k->j->k->j
        for (int p = 0; p < K; p++) {
            if (p & 1) {
                cout << k << " ";
            }
            else {
                cout << j << " ";
            }
        }
    }
    else {
        // i->j->i->j->k->j->k
        for (int p = 0; p < K; p++) {
            if (p & 1) {
                cout << k << " ";
            }
            else {
                cout << j << " ";
            }
        }
    }
}
 
// Function to check that
// if there exists a palindromic path
// in a binary graph
void constructPalindromicPath(
    vector<pair<pair<int, int>, char> > edges,
    int n, int K)
{
    // Create adjacency matrix
    vector<vector<char> > adj(
        n + 1,
        vector<char>(n + 1));
    for (int i = 0; i < edges.size(); i++) {
        adj[edges[i]
                .first.first][edges[i]
                                  .first.second]
            = edges[i].second;
    }
 
    // If K is odd then
    // print the path directly by
    // choosing node 1 and 2 repeatedly
    if (K & 1) {
        cout << "YES" << endl;
        for (int i = 1; i <= K + 1; i++) {
            cout << (i & 1) + 1 << " ";
        }
        return;
    }
 
    // If K is even
    // Try to find an edge such that weight of
    // edge i->j and j->i is equal
    bool found = 0;
    int idx1, idx2;
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= n; j++) {
            if (i == j) {
                continue;
            }
            if (adj[i][j] == adj[j][i]) {
                // Same weight edges are found
                found = 1;
 
                // Store their indexes
                idx1 = i, idx2 = j;
            }
        }
    }
    if (found) {
        // Print the path
        cout << "YES" << endl;
        for (int i = 1; i <= K + 1; i++) {
            if (i & 1) {
                cout << idx1 << " ";
            }
            else {
                cout << idx2 << " ";
            }
        }
        return;
    }
 
    // If nodes i, j having equal weight
    // on edges i->j and j->i can not
    // be found then try to find
    // three nodes i, j, k such that
    // weights of edges i->j
    // and j->k are equal
    else {
 
        // To store edges with weight '0'
        vector<int> mp1[n + 1];
 
        // To store edges with weight '1'
        vector<int> mp2[n + 1];
 
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= n; j++) {
                if (i == j) {
                    continue;
                }
                if (adj[i][j] == '0') {
                    mp1[i].push_back(j);
                }
                else {
                    mp2[i].push_back(j);
                }
            }
        }
 
        // Try to find edges i->j and
        // j->k having weight 0
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= n; j++) {
                if (j == i) {
                    continue;
                }
                if (adj[i][j] == '0') {
                    if (mp1[j].size()) {
                        int k = mp1[j][0];
                        if (k == i || k == j) {
                            continue;
                        }
                        cout << "YES" << endl;
                        K -= 2;
                        K /= 2;
 
                        // Print left Path
                        printLeftPath(i, j, K);
 
                        // Print centre
                        cout << i << " "
                             << j << " " << k
                             << " ";
 
                        // Print right path
                        printRightPath(j, k, K);
                        return;
                    }
                }
            }
        }
 
        // Try to find edges i->j
        // and j->k which having
        // weight 1
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= n; j++) {
                if (j == i) {
                    continue;
                }
                if (adj[i][j] == '1') {
                    if (mp1[j].size()) {
                        int k = mp1[j][0];
                        // cout<<k;
                        if (k == i || k == j) {
                            continue;
                        }
                        cout << "YES" << endl;
                        K -= 2;
                        K /= 2;
                        printLeftPath(i, j, K);
                        cout << i << " "
                             << j << " " << k
                             << " ";
                        printRightPath(j, k, K);
                        return;
                    }
                }
            }
        }
    }
    cout << "NO";
}
 
// Driver Code
int main()
{
    int N = 3, K = 4;
    vector<pair<pair<int, int>, char> > edges
        = { { { 1, 2 }, '1' },
            { { 1, 3 }, '1' },
            { { 2, 1 }, '1' },
            { { 2, 3 }, '1' },
            { { 3, 1 }, '0' },
            { { 3, 2 }, '0' } };
 
    constructPalindromicPath(edges, N, K);
}


Python3




# Python implementation for the above approach
 
# Function to print the left path
def printLeftPath(i, j, K):
    if (K & 1):
        # j->i->j->i->j->k->j->k->j
        for p in range(0, K):
            if (p & 1):
                print(i, end=" ")
            else:
                print(j, end=" ")
 
    else:
        # i->j->i->j->k->j->k
        for p in range(K):
            if (p & 1):
                print(j, end=" ")
            else:
                print(i, end=" ")
 
 
# Function to print the right path
def printRightPath(j, k, K):
    if (K & 1):
        # j->i->j->i->j->k->j->k->j
        for p in range(K):
            if (p & 1):
                print(K, end=" ")
            else:
                print(j, end=" ")
    else:
        # i->j->i->j->k->j->k
        for p in range(K):
            if (p & 1):
                print(K, end=" ")
            else:
                print(j, end=" ")
 
 
# Function to check that
# if there exists a palindromic path
# in a binary graph
def constructPalindromicPath(edges, n, K):
    # Create adjacency matrix
    adj = [[0 for i in range(n + 1)] for i in range(n + 1)]
 
    for i in range(len(edges)):
        adj[edges[i][0][0]][edges[i][0][1]] = edges[i][1]
 
    # If K is odd then
    # print the path directly by
    # choosing node 1 and 2 repeatedly
    if (K & 1):
        print("YES")
        for i in range(1, K + 2):
            print((i & 1) + 1, end=" ")
        return
 
    # If K is even
    # Try to find an edge such that weight of
    # edge i->j and j->i is equal
    found = 0
    idx1 = None
    idx2 = None
 
    for i in range(1, n + 1):
        for j in range(1, n + 1):
            if (i == j):
                continue
 
            if (adj[i][j] == adj[j][i]):
                # Same weight edges are found
                found = 1
 
                # Store their indexes
                idx1 = i
                idx2 = j
 
    if (found):
        # Print the path
        print("YES")
        for i in range(1, K + 2):
            if (i & 1):
                print(idx1, end=" ")
            else:
                print(idx2, end=" ")
        return
 
    # If nodes i, j having equal weight
    # on edges i->j and j->i can not
    # be found then try to find
    # three nodes i, j, k such that
    # weights of edges i->j
    # and j->k are equal
    else:
 
        # To store edges with weight '0'
        mp1 = [[] for i in range*(n + 1)]
 
        # To store edges with weight '1'
        mp2 = [[] for i in range(n + 1)]
 
        for i in range(1, n + 1):
            for j in range(1, n + 1):
                if (i == j):
                    continue
 
                if (adj[i][j] == '0'):
                    mp1[i].push(j)
                else:
                    mp2[i].push(j)
 
        # Try to find edges i->j and
        # j->k having weight 0
        for i in range(1, n + 1):
            for j in range(1, n + 1):
                if (j == i):
                    continue
 
                if (adj[i][j] == '0'):
                    if (len(mp1[j])):
                        k = mp1[j][0]
                        if (k == i or k == j):
                            continue
 
                        print("YES")
                        K -= 2
                        K = k // 2
 
                        # Print left Path
                        printLeftPath(i, j, K)
 
                        # Print centre
                        print(f"{i} {j} {k}")
 
                        # Print right path
                        printRightPath(j, k, K)
                        return
 
        # Try to find edges i->j
        # and j->k which having
        # weight 1
        for i in range(1, n + 1):
            for j in range(1, n + 1):
                if (j == i):
                    continue
 
                if (adj[i][j] == '1'):
                    if (len(mp1[j])):
                        k = mp1[j][0]
                        # cout<<k;
                        if (k == i or k == j):
                            continue
 
                        print("YES")
                        K -= 2
                        K = k // 2
                        printLeftPath(i, j, K)
                        print(f"{i} {j} {k}")
                        printRightPath(j, k, K)
                        return
 
    print("NO")
 
 
# Driver Code
N = 3
K = 4
edges = [[[1, 2], '1'],
         [[1, 3], '1'],
         [[2, 1], '1'],
         [[2, 3], '1'],
         [[3, 1], '0'],
         [[3, 2], '0']]
 
constructPalindromicPath(edges, N, K)
 
# This code is contributed by gfgking.


Javascript




<script>
    // JavaScript implementation for the above approach
 
 
    // Function to print the left path
    const printLeftPath = (i, j, K) => {
        if (K & 1) {
            // j->i->j->i->j->k->j->k->j
            for (let p = 0; p < K; p++) {
                if (p & 1) {
                    document.write(`${i} `);
                }
                else {
                    document.write(`${j} `);
                }
            }
        }
        else {
            // i->j->i->j->k->j->k
            for (let p = 0; p < K; p++) {
                if (p & 1) {
                    document.write(`${j} `);
                }
                else {
                    document.write(`${i} `);
                }
            }
        }
    }
 
    // Function to print the right path
    const printRightPath = (j, k, K) => {
        if (K & 1) {
            // j->i->j->i->j->k->j->k->j
            for (let p = 0; p < K; p++) {
                if (p & 1) {
                    document.write(`${K} `);
                }
                else {
                    document.write(`${j} `);
                }
            }
        }
        else {
            // i->j->i->j->k->j->k
            for (let p = 0; p < K; p++) {
                if (p & 1) {
                    document.write(`${K} `);
                }
                else {
                    document.write(`${j} `);
                }
            }
        }
    }
 
    // Function to check that
    // if there exists a palindromic path
    // in a binary graph
    const constructPalindromicPath = (edges, n, K) => {
        // Create adjacency matrix
        let adj = new Array(n + 1).fill(0).map(() => new Array(n + 1).fill(0));
        for (let i = 0; i < edges.length; i++) {
            adj[edges[i][0][0]][edges[i][0][1]] = edges[i][1];
        }
 
        // If K is odd then
        // print the path directly by
        // choosing node 1 and 2 repeatedly
        if (K & 1) {
            document.write(`YES<br/>`);
            for (let i = 1; i <= K + 1; i++) {
                document.write(`${(i & 1) + 1} `);
            }
            return;
        }
 
        // If K is even
        // Try to find an edge such that weight of
        // edge i->j and j->i is equal
        let found = 0;
        let idx1, idx2;
        for (let i = 1; i <= n; i++) {
            for (let j = 1; j <= n; j++) {
                if (i == j) {
                    continue;
                }
                if (adj[i][j] == adj[j][i]) {
                    // Same weight edges are found
                    found = 1;
 
                    // Store their indexes
                    idx1 = i;
                    idx2 = j;
                }
            }
        }
        if (found) {
            // Print the path
            document.write(`YES<br/>`)
            for (let i = 1; i <= K + 1; i++) {
                if (i & 1) {
                    document.write(`${idx1} `);
                }
                else {
                    document.write(`${idx2} `);
                }
            }
            return;
        }
 
        // If nodes i, j having equal weight
        // on edges i->j and j->i can not
        // be found then try to find
        // three nodes i, j, k such that
        // weights of edges i->j
        // and j->k are equal
        else {
 
            // To store edges with weight '0'
            let mp1 = new Array(n + 1).fill([]);
 
            // To store edges with weight '1'
            let mp2 = new Array(n + 1).fill([]);
 
            for (let i = 1; i <= n; i++) {
                for (let j = 1; j <= n; j++) {
                    if (i == j) {
                        continue;
                    }
                    if (adj[i][j] == '0') {
                        mp1[i].push(j);
                    }
                    else {
                        mp2[i].push(j);
                    }
                }
            }
 
            // Try to find edges i->j and
            // j->k having weight 0
            for (let i = 1; i <= n; i++) {
                for (let j = 1; j <= n; j++) {
                    if (j == i) {
                        continue;
                    }
                    if (adj[i][j] == '0') {
                        if (mp1[j].size()) {
                            let k = mp1[j][0];
                            if (k == i || k == j) {
                                continue;
                            }
                            document.write(`YES<br/>`);
                            K -= 2;
                            K = parseInt(k / 2);
 
                            // Print left Path
                            printLeftPath(i, j, K);
 
                            // Print centre
                            document.write(`${i} ${j} ${k} `);
 
                            // Print right path
                            printRightPath(j, k, K);
                            return;
                        }
                    }
                }
            }
 
            // Try to find edges i->j
            // and j->k which having
            // weight 1
            for (let i = 1; i <= n; i++) {
                for (let j = 1; j <= n; j++) {
                    if (j == i) {
                        continue;
                    }
                    if (adj[i][j] == '1') {
                        if (mp1[j].length) {
                            let k = mp1[j][0];
                            // cout<<k;
                            if (k == i || k == j) {
                                continue;
                            }
                            document.write(`YES<br/>`);
                            K -= 2;
                            K = parseInt(k / 2);
                            printLeftPath(i, j, K);
                            document.write(`${i} ${j} ${k} `);
                            printRightPath(j, k, K);
                            return;
                        }
                    }
                }
            }
        }
        document.write("NO");
    }
 
    // Driver Code
    let N = 3, K = 4;
    let edges = [[[1, 2], '1'],
    [[1, 3], '1'],
    [[2, 1], '1'],
    [[2, 3], '1'],
    [[3, 1], '0'],
    [[3, 2], '0']];
 
    constructPalindromicPath(edges, N, K);
 
// This code is contributed by rakeshsahni.
</script>


Output

YES
2 1 2 1 2 

Time Complexity: O(N*N)
Auxiliary Space: O(N*N)

Last Updated :
26 Nov, 2021
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Take a part in the ongoing discussion

RELATED ARTICLES

Most Popular

Recent Comments