Thursday, January 9, 2025
Google search engine
HomeData Modelling & AIFind numbers with K odd divisors in a given range

Find numbers with K odd divisors in a given range

Given two numbers a and b, and a number k which is odd. The task is to find all the numbers between a and b (both inclusive) having exactly k divisors.
Examples: 
 

Input : a = 2, b = 49, k = 3
Output: 4
// Between 2 and 49 there are four numbers
// with three divisors
// 4 (Divisors 1, 2, 4), 9 (Divisors 1, 3, 9),
// 25 (Divisors 1, 5, 25} and 49 (1, 7 and 49)

Input : a = 1, b = 100, k = 9
Output: 2
// between 1 and 100 there are 36 (1, 2, 3, 4, 6, 9, 12, 18, 36)
// and 100 (1, 2, 4, 5, 10, 20, 25, 50, 100) having exactly 9 
// divisors

 

Recommended Practice

This problem has simple solution, here we are given that k is odd and we know that only perfect square numbers have odd number of divisors , so we just need to check all perfect square numbers between a and b, and calculate divisors of only those perfect square numbers. 
 

C++




// C++ program to count numbers with k odd
// divisors in a range.
#include<bits/stdc++.h>
using namespace std;
 
// Utility function to check if number is
// perfect square or not
bool isPerfect(int n)
{
    int s = sqrt(n);
 
    return (s*s == n);
}
 
// Utility Function to return count of divisors
// of a number
int divisorsCount(int n)
{
    // Note that this loop runs till square root
    int count=0;
    for (int i=1; i<=sqrt(n)+1; i++)
    {
        if (n%i==0)
        {
            // If divisors are equal, count it
            // only once
            if (n/i == i)
                count += 1;
 
            // Otherwise print both
            else
                count += 2;
        }
    }
    return count;
}
 
// Function to calculate all divisors having
// exactly k divisors  between a and b
int kDivisors(int a,int b,int k)
{
    int count = 0; // Initialize result
 
    // calculate only for perfect square numbers
    for (int i=a; i<=b; i++)
    {
        // check if number is perfect square or not
        if (isPerfect(i))
 
            // total divisors of number equals to
            // k or not
            if (divisors(i) == k)
                count++;
 
    }
    return count;
}
 
// Driver program to run the case
int main()
{
    int a = 2, b = 49, k = 3;
    cout << kDivisors(a, b, k);
    return 0;
}


Java




// Java program to count numbers
// with k odd divisors in a range.
import java.io.*;
import java.math.*;
 
class GFG {
     
    // Utility function to check if
    // number is perfect square or not
    static boolean isPerfect(int n)
    {
        int s = (int)(Math.sqrt(n));
     
        return (s*s == n);
    }
     
    // Utility Function to return
    // count of divisors of a number
    static int divisorsCount(int n)
    {
        // Note that this loop
        // runs till square root
        int count=0;
         
      for (int i = 1; i <= Math.sqrt(n) + 1; i++)
      {
        if (n % i == 0)
        {
                 
            // If divisors are equal,
            // count it only once
            if (n / i == i)
                count += 1;
 
            // Otherwise print both
            else
                count += 2;
        }
      }
        return count;
    }
     
    // Function to calculate all
    // divisors having exactly k
    // divisors between a and b
    static int kDivisors(int a,int b,int k)
    {
        // Initialize result
        int count = 0;
     
        // calculate only for
        // perfect square numbers
        for (int i = a; i <= b; i++)
        {
            // check if number is
            // perfect square or not
            if (isPerfect(i))
     
                // total divisors of number
                // equals to k or not
                if (divisorsCount(i) == k)
                    count++;
     
        }
        return count;
    }
     
    // Driver program to run the case
    public static void main(String args[])
    {
        int a = 21, b = 149, k = 333;
        System.out.println(kDivisors(a, b, k));
    }
}
 
// This code is contributed by Nikita Tiwari.


Python3




# Python3 program to count numbers
# with k odd divisors in a range.
import math
 
# Utility function to check if number
# is perfect square or not
def isPerfect(n) :
    s = math.sqrt(n)
 
    return (s * s == n)
 
# Utility Function to return
# count of divisors of a number
def divisorsCount(n) :
     
    # Note that this loop runs till
    # square root
    count = 0
    for i in range(1, (int)(math.sqrt(n) + 2)) :
         
        if (n % i == 0) :
            # If divisors are equal,
            # count it only once
            if (n // i == i) :
                count = count + 1
 
            # Otherwise print both
            else :
                count = count + 2
         
    return count
     
# Function to calculate all divisors having
# exactly k divisors between a and b
def kDivisors(a, b, k) :
    count = 0 # Initialize result
 
    # calculate only for perfect square numbers
    for i in range(a, b + 1) :
         
        # check if number is perfect square or not
        if (isPerfect(i)) :
            # total divisors of number equals to
            # k or not
            if (divisorsCount(i) == k) :
                count = count + 1
 
    return count
 
# Driver program to run the case
a = 2
b = 49
k = 3
print(kDivisors(a, b, k))
 
# This code is contributed by Nikita Tiwari.


C#




// C# program to count numbers with
// k odd divisors in a range.
using System;
 
class GFG {
     
    // Utility function to check if number
    // is perfect square or not
    static bool isPerfect(int n)
    {
        int s = (int)(Math.Sqrt(n));
     
        return (s * s == n);
    }
     
    // Utility Function to return
    // count of divisors of a number
    static int divisorsCount(int n)
    {
        // Note that this loop
        // runs till square root
        int count=0;
         
    for (int i = 1; i <= Math.Sqrt(n) + 1; i++)
    {
        if (n % i == 0)
        {
                 
            // If divisors are equal,
            // count it only once
            if (n / i == i)
                count += 1;
 
            // Otherwise print both
            else
                count += 2;
        }
    }
        return count;
    }
     
    // Function to calculate all
    // divisors having exactly k
    // divisors between a and b
    static int kDivisors(int a, int b,
                         int k)
    {
        // Initialize result
        int count = 0;
     
        // calculate only for
        // perfect square numbers
        for (int i = a; i <= b; i++)
        {
            // check if number is
            // perfect square or not
            if (isPerfect(i))
     
                // total divisors of number
                // equals to k or not
                if (divisorsCount(i) == k)
                    count++;
     
        }
        return count;
    }
     
    // Driver Code
    public static void Main(String []args)
    {
        int a = 21, b = 149, k = 333;
        Console.Write(kDivisors(a, b, k));
    }
}
 
// This code is contributed by Nitin Mittal.


PHP




<?php
// PHP program to count numbers
// with k odd divisors in a range.
 
// function to check if number is
// perfect square or not
function isPerfect($n)
{
    $s = sqrt($n);
    return ($s * $s == $n);
}
 
// Function to return count
// of divisors of a number
function divisorsCount($n)
{
     
    // Note that this loop
    // runs till square root
    $count = 0;
    for ($i = 1; $i <= sqrt($n) + 1; $i++)
    {
        if ($n % $i == 0)
        {
             
            // If divisors are equal,
            // count it only once
            if ($n / $i == $i)
                $count += 1;
 
            // Otherwise print both
            else
                $count += 2;
        }
    }
    return $count;
}
 
// Function to calculate
// all divisors having
// exactly k divisors
// between a and b
function kDivisors($a, $b, $k)
{  
     
    // Initialize result
    $count = 0;
 
    // calculate only for
    // perfect square numbers
    for ($i = $a; $i <= $b; $i++)
    {
         
        // check if number is
        // perfect square or not
        if (isPerfect($i))
 
            // total divisors of
            // number equals to
            // k or not
            if (divisorsCount($i) == $k)
                $count++;
 
    }
    return $count;
}
 
    // Driver Code
    $a = 2;
    $b = 49;
    $k = 3;
    echo kDivisors($a, $b, $k);
     
// This code is contributed by nitin mittal.
?>


Javascript




<script>
 
// JavaScript program to count numbers with
// k odd divisors in a range.
 
// Utility function to check if number
// is perfect square or not
function isPerfect(n)
{
    var s = parseInt((Math.sqrt(n)));
 
    return (s * s == n);
}
 
// Utility Function to return
// count of divisors of a number
function divisorsCount(n)
{
    // Note that this loop
    // runs till square root
    var count=0;
     
for (var i = 1; i <= parseInt(Math.sqrt(n)) + 1; i++)
{
 
    if (n % i == 0)
    {
             
        // If divisors are equal,
        // count it only once
        if (parseInt(n / i) == i)
            count += 1;
        // Otherwise print both
        else
            count += 2;
    }
}
 
    return count;
}
 
// Function to calculate all
// divisors having exactly k
// divisors between a and b
function kDivisors(a, b, k)
{
    // Initialize result
    var count = 0;
 
    // calculate only for
    // perfect square numbers
    for(var i = a; i <= b; i++)
    {
        // check if number is
        // perfect square or not
        if (isPerfect(i))
        {
            // total divisors of number
            // equals to k or not
            if (divisorsCount(i)==k)
            {
                count++;
            }
        }
 
    }
    return count;
}
 
// Driver Code
var a = 2, b = 49, k = 3;
document.write(kDivisors(a, b, k));
 
</script>


Output:  

4

Time Complexity: O(nsqrtn) , where n is the range of a and b
Auxiliary Space: O(1)

This problem can be solved more efficiently. Please refer method 2 of below post for an efficient solution.
Number of perfect squares between two given numbers
If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments