Sunday, October 12, 2025
HomeData Modelling & AIFind numbers which are multiples of first array and factors of second...

Find numbers which are multiples of first array and factors of second array

Given two arrays A[] and B[], the task is to find the integers which are divisible by all the elements of array A[] and divide all the elements of array B[].

Examples:  

Input: A[] = {1, 2, 2, 4}, B[] = {16, 32, 64} 
Output: 4 8 16 
4, 8 and 16 are the only numbers that 
are multiples of all the elements of array A[] 
and divide all the elements of array B[]

Input: A[] = {2, 3, 6}, B[] = {42, 84} 
Output: 6 42 
 

Approach: If X is a multiple of all the elements of the first array then X must be a multiple of the LCM of all the elements of the first array. 
Similarly, If X is a factor of all the elements of the second array then it must be a factor of the GCD of all the elements of the second array and such X will exist only if GCD of the second array is divisible by the LCM of the first array. 
If it is divisible then X can be any value from the range [LCM, GCD] which is a multiple of LCM and evenly divides GCD.

Below is the implementation of above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the LCM of two numbers
int lcm(int x, int y)
{
    int temp = (x * y) / __gcd(x, y);
    return temp;
}
 
// Function to print the required numbers
void findNumbers(int a[], int n, int b[], int m)
{
 
    // To store the lcm of array a[] elements
    // and the gcd of array b[] elements
    int lcmA = 1, gcdB = 0;
 
    // Finding LCM of first array
    for (int i = 0; i < n; i++)
        lcmA = lcm(lcmA, a[i]);
 
    // Finding GCD of second array
    for (int i = 0; i < m; i++)
        gcdB = __gcd(gcdB, b[i]);
 
    // No such element exists
    if (gcdB % lcmA != 0) {
        cout << "-1";
        return;
    }
 
    // All the multiples of lcmA which are
    // less than or equal to gcdB and evenly
    // divide gcdB will satisfy the conditions
    int num = lcmA;
    while (num <= gcdB) {
        if (gcdB % num == 0)
            cout << num << " ";
        num += lcmA;
    }
}
 
// Driver code
int main()
{
 
    int a[] = { 1, 2, 2, 4 };
    int b[] = { 16, 32, 64 };
 
    int n = sizeof(a) / sizeof(a[0]);
    int m = sizeof(b) / sizeof(b[0]);
 
    findNumbers(a, n, b, m);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
static int __gcd(int a, int b)
{
    if (b == 0)
        return a;
    return __gcd(b, a % b);
     
}
 
// Function to return the LCM of two numbers
static int lcm(int x, int y)
{
    int temp = (x * y) / __gcd(x, y);
    return temp;
}
 
// Function to print the required numbers
static void findNumbers(int a[], int n,
                        int b[], int m)
{
 
    // To store the lcm of array a[] elements
    // and the gcd of array b[] elements
    int lcmA = 1, gcdB = 0;
 
    // Finding LCM of first array
    for (int i = 0; i < n; i++)
        lcmA = lcm(lcmA, a[i]);
 
    // Finding GCD of second array
    for (int i = 0; i < m; i++)
        gcdB = __gcd(gcdB, b[i]);
 
    // No such element exists
    if (gcdB % lcmA != 0)
    {
        System.out.print("-1");
        return;
    }
 
    // All the multiples of lcmA which are
    // less than or equal to gcdB and evenly
    // divide gcdB will satisfy the conditions
    int num = lcmA;
    while (num <= gcdB)
    {
        if (gcdB % num == 0)
            System.out.print(num + " ");
        num += lcmA;
    }
}
 
// Driver code
public static void main(String[] args)
{
    int a[] = { 1, 2, 2, 4 };
    int b[] = { 16, 32, 64 };
 
    int n = a.length;
    int m = b.length;
 
    findNumbers(a, n, b, m);
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 implementation of the approach
from math import gcd
 
# Function to return the LCM of two numbers
def lcm( x, y) :
     
    temp = (x * y) // gcd(x, y);
    return temp;
 
# Function to print the required numbers
def findNumbers(a, n, b, m) :
 
    # To store the lcm of array a[] elements
    # and the gcd of array b[] elements
    lcmA = 1; __gcdB = 0;
 
    # Finding LCM of first array
    for i in range(n) :
        lcmA = lcm(lcmA, a[i]);
 
    # Finding GCD of second array
    for i in range(m) :
        __gcdB = gcd(__gcdB, b[i]);
 
    # No such element exists
    if (__gcdB % lcmA != 0) :
        print("-1");
        return;
 
    # All the multiples of lcmA which are
    # less than or equal to gcdB and evenly
    # divide gcdB will satisfy the conditions
    num = lcmA;
    while (num <= __gcdB) :
        if (__gcdB % num == 0) :
            print(num, end = " ");
             
        num += lcmA;
 
# Driver code
if __name__ == "__main__" :
 
    a = [ 1, 2, 2, 4 ];
    b = [ 16, 32, 64 ];
     
    n = len(a);
    m = len(b);
     
    findNumbers(a, n, b, m);
     
# This code is contributed by AnkitRai01


C#




// C# implementation of the approach
using System;
 
class GFG
{
static int __gcd(int a, int b)
{
    if (b == 0)
        return a;
    return __gcd(b, a % b);
}
 
// Function to return the LCM of two numbers
static int lcm(int x, int y)
{
    int temp = (x * y) / __gcd(x, y);
    return temp;
}
 
// Function to print the required numbers
static void findNumbers(int []a, int n,
                        int []b, int m)
{
 
    // To store the lcm of array a[] elements
    // and the gcd of array b[] elements
    int lcmA = 1, gcdB = 0;
 
    // Finding LCM of first array
    for (int i = 0; i < n; i++)
        lcmA = lcm(lcmA, a[i]);
 
    // Finding GCD of second array
    for (int i = 0; i < m; i++)
        gcdB = __gcd(gcdB, b[i]);
 
    // No such element exists
    if (gcdB % lcmA != 0)
    {
        Console.Write("-1");
        return;
    }
 
    // All the multiples of lcmA which are
    // less than or equal to gcdB and evenly
    // divide gcdB will satisfy the conditions
    int num = lcmA;
    while (num <= gcdB)
    {
        if (gcdB % num == 0)
            Console.Write(num + " ");
        num += lcmA;
    }
}
 
// Driver code
public static void Main(String[] args)
{
    int []a = { 1, 2, 2, 4 };
    int []b = { 16, 32, 64 };
 
    int n = a.Length;
    int m = b.Length;
 
    findNumbers(a, n, b, m);
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to find nth centered
// tridecagonal number
function __gcd(a, b)
{
    if (b == 0)
        return a;
         
    return __gcd(b, a % b);
     
}
 
// Function to return the LCM of two numbers
function lcm(x, y)
{
    var temp = (x * y) / __gcd(x, y);
    return temp;
}
 
// Function to print the required numbers
function findNumbers(a, n, b, m)
{
     
    // To store the lcm of array a[] elements
    // and the gcd of array b[] elements
    var lcmA = 1, gcdB = 0;
 
    // Finding LCM of first array
    for(var i = 0; i < n; i++)
        lcmA = lcm(lcmA, a[i]);
 
    // Finding GCD of second array
    for(var i = 0; i < m; i++)
        gcdB = __gcd(gcdB, b[i]);
 
    // No such element exists
    if (gcdB % lcmA != 0)
    {
        document.write("-1");
        return;
    }
 
    // All the multiples of lcmA which are
    // less than or equal to gcdB and evenly
    // divide gcdB will satisfy the conditions
    var num = lcmA;
    while (num <= gcdB)
    {
        if (gcdB % num == 0)
            document.write(num + " ");
             
        num += lcmA;
    }
}
 
// Driver code
var a = [ 1, 2, 2, 4 ];
var b = [ 16, 32, 64 ];
 
var n = a.length;
var m = b.length;
 
findNumbers(a, n, b, m);
 
// This code is contributed by Ankita saini
 
</script>


Output: 

4 8 16

 

Time Complexity: O(max(n,m) * log(min(a, b)))

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32353 POSTS0 COMMENTS
Milvus
87 POSTS0 COMMENTS
Nango Kala
6721 POSTS0 COMMENTS
Nicole Veronica
11885 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11943 POSTS0 COMMENTS
Shaida Kate Naidoo
6841 POSTS0 COMMENTS
Ted Musemwa
7105 POSTS0 COMMENTS
Thapelo Manthata
6797 POSTS0 COMMENTS
Umr Jansen
6798 POSTS0 COMMENTS