Monday, January 13, 2025
Google search engine
HomeData Modelling & AIFind numbers that divide X and Y to produce the same remainder

Find numbers that divide X and Y to produce the same remainder

Given two integers X and Y, the task is to find and print the numbers that divide X and Y to produce the same remainder.
Examples: 
 

Input: X = 1, Y = 5 
Output: 1, 2, 4 
Explanation: 
Let the number be M. It can be any value in the range [1, 5]: 
If M = 1, 1 % 1 = 0 and 5 % 1 = 0 
If M = 2, 1 % 2 = 1 and 5 % 2 = 1 
If M = 3, 1 % 3 = 1 and 5 % 3 = 2 
If M = 4, 1 % 4 = 1 and 5 % 4 = 1 
If M = 5, 1 % 5 = 1 and 5 % 5 = 0 
Therefore, the possible M values are 1, 2, 4
Input: X = 8, Y = 10 
Output: 1, 2 
 

 

Naive Approach: The naive approach for this problem is to check the modulo value for all the possible values of M in the range [1, max(X, Y)] and print the value of M if the condition satisfies. 
Below is the implementation of the above approach: 
 

C++




// C++ program to find numbers
// that divide X and Y
// to produce the same remainder
 
#include <iostream>
using namespace std;
 
// Function to find
// the required number as M
void printModulus(int X, int Y)
{
    // Finding the maximum
    // value among X and Y
    int n = max(X, Y);
 
    // Loop to iterate through
    // maximum value among X and Y.
    for (int i = 1; i <= n; i++) {
 
        // If the condition satisfies, then
        // print the value of M
        if (X % i == Y % i)
            cout << i << " ";
    }
}
 
// Driver code
int main()
{
 
    int X, Y;
    X = 10;
    Y = 20;
    printModulus(X, Y);
    return 0;
}


Java




// Java program to find numbers
// that divide X and Y
// to produce the same remainder
import java.util.*;
import java.io.*;
class GFG{
  
// Function to find
// the required number as M
static void printModulus(int X, int Y)
{
    // Finding the maximum
    // value among X and Y
    int n = Math.max(X, Y);
  
    // Loop to iterate through
    // maximum value among X and Y.
    for (int i = 1; i <= n; i++) {
  
        // If the condition satisfies, then
        // print the value of M
        if (X % i == Y % i)
            System.out.print(i + " ");
    }
}
  
// Driver code
public static void main(String[] args)
{
  
    int X, Y;
    X = 10;
    Y = 20;
    printModulus(X, Y);
}
}
 
// This code is contributed by Princi Singh


Python3




# Python program to find numbers
# that divide X and Y
# to produce the same remainder
 
# Function to find
# the required number as M
def printModulus( X, Y):
     
    # Finding the maximum
    # value among X and Y
    n = max(X, Y)
 
    # Loop to iterate through
    # maximum value among X and Y.
    for i in range(1, n + 1):
 
        # If the condition satisfies, then
        # print the value of M
        if (X % i == Y % i):
            print(i,end=" ")
 
# Driver code
X = 10
Y = 20
printModulus(X, Y)
 
# This code is contributed by Atul_kumar_Shrivastava


C#




// C# program to find numbers
// that divide X and Y
// to produce the same remainder
using System;
 
class GFG{
 
// Function to find
// the required number as M
static void printModulus(int X, int Y)
{
    // Finding the maximum
    // value among X and Y
    int n = Math.Max(X, Y);
 
    // Loop to iterate through
    // maximum value among X and Y.
    for (int i = 1; i <= n; i++) {
 
        // If the condition satisfies, then
        // print the value of M
        if (X % i == Y % i)
            Console.Write(i + " ");
    }
}
 
// Driver code
public static void Main()
{
    int X, Y;
    X = 10;
    Y = 20;
    printModulus(X, Y);
}
}
 
// This code is contributed by AbhiThakur


Javascript




<script>
 
// Javascript program to find numbers
// that divide X and Y
// to produce the same remainder
 
// Function to find
// the required number as M
function printModulus(X, Y)
{
    // Finding the maximum
    // value among X and Y
    var n = Math.max(X, Y);
 
    // Loop to iterate through
    // maximum value among X and Y.
    for (var i = 1; i <= n; i++) {
 
        // If the condition satisfies, then
        // print the value of M
        if (X % i == Y % i)
            document.write(i+" ");
    }
}
 
// Driver code
X = 10;
Y = 20;
printModulus(X, Y);
 
// This code is contributed by noob2000.
</script>


Output: 

1 2 5 10

 

Time Complexity: O(max(X, Y))
Auxiliary Space: O(1)
 

Efficient Approach: Let’s assume that Y is greater than X by a difference of D
 

  • Then Y can be expressed as 
     
Y = X + D
and
Y % M = (X + D) % M
      = (X % M) + (D % M)
  • Now, the condition becomes whether X % M and X % M + D % M are equal or not.
  • Here, since X % M is common on both the sides, the value of M is true if for some M, D % M = 0.
  • Therefore, the required values of M will be the factors of D.

Below is the implementation of the above approach: 
 

CPP




// C++ program to find numbers
// that divide X and Y to
// produce the same remainder
 
#include <iostream>
using namespace std;
 
// Function to print all the possible values
// of M such that X % M = Y % M
void printModulus(int X, int Y)
{
    // Finding the absolute difference
    // of X and Y
    int d = abs(X - Y);
 
    // Iterating from 1
    int i = 1;
 
    // Loop to print all the factors of D
    while (i * i <= d) {
 
        // If i is a factor of d, then print i
        if (d % i == 0) {
            cout << i << " ";
 
            // If d / i is a factor of d,
            // then print d / i
            if (d / i != i)
                cout << d / i << " ";
        }
        i++;
    }
}
 
// Driver code
int main()
{
 
    int X = 10;
    int Y = 26;
 
    printModulus(X, Y);
    return 0;
}


Java




// Java program to find numbers
// that divide X and Y to
// produce the same remainder
import java.util.*;
import java.io.*;
class GFG{
  
// Function to print all the possible values
// of M such that X % M = Y % M
static void printModulus(int X, int Y)
{
    // Finding the absolute difference
    // of X and Y
    int d = Math.abs(X - Y);
  
    // Iterating from 1
    int i = 1;
  
    // Loop to print all the factors of D
    while (i * i <= d) {
  
        // If i is a factor of d, then print i
        if (d % i == 0) {
            System.out.print(i+ " ");
  
            // If d / i is a factor of d,
            // then print d / i
            if (d / i != i)
                System.out.print(d / i+ " ");
        }
        i++;
    }
}
  
// Driver code
public static void main(String[] args)
{
  
    int X = 10;
    int Y = 26;
  
    printModulus(X, Y);
}
}
 
// This code is contributed by Princi Singh


Python3




# Python program to find numbers
# that divide X and Y to
# produce the same remainder
 
# Function to print all the possible values
# of M such that X % M = Y % M
def printModulus(X, Y):
    # Finding the absolute difference
    # of X and Y
    d = abs(X - Y);
 
    # Iterating from 1
    i = 1;
 
    # Loop to print all the factors of D
    while (i * i <= d):
 
        # If i is a factor of d, then pri
        if (d % i == 0):
            print(i, end="");
 
            # If d / i is a factor of d,
            # then prd / i
            if (d // i != i):
                print(d // i, end=" ");
         
        i+=1;
     
 
 
# Driver code
if __name__ == '__main__':
 
    X = 10;
    Y = 26;
 
    printModulus(X, Y);
 
# This code contributed by Princi Singh


C#




// C# program to find numbers
// that divide X and Y to
// produce the same remainder
using System;
 
public class GFG{
   
// Function to print all the possible values
// of M such that X % M = Y % M
static void printModulus(int X, int Y)
{
    // Finding the absolute difference
    // of X and Y
    int d = Math.Abs(X - Y);
   
    // Iterating from 1
    int i = 1;
   
    // Loop to print all the factors of D
    while (i * i <= d) {
   
        // If i is a factor of d, then print i
        if (d % i == 0) {
            Console.Write(i+ " ");
   
            // If d / i is a factor of d,
            // then print d / i
            if (d / i != i)
                Console.Write(d / i+ " ");
        }
        i++;
    }
}
   
// Driver code
public static void Main(String[] args)
{
   
    int X = 10;
    int Y = 26;
   
    printModulus(X, Y);
}
}
  
// This code contributed by Princi Singh


Javascript




  <script>
    // Javascript program to find numbers
    // that divide X and Y to
    // produce the same remainder
 
    // Function to print all the possible values
    // of M such that X % M = Y % M
    function printModulus(X, Y)
    {
     
      // Finding the absolute difference
      // of X and Y
      var d = Math.abs(X - Y);
 
      // Iterating from 1
      var i = 1;
 
      // Loop to print all the factors of D
      while (i * i <= d) {
 
        // If i is a factor of d, then print i
        if (d % i == 0) {
          document.write(i + " ");
 
          // If d / i is a factor of d,
          // then print d / i
          if (d / i != i)
            document.write(parseInt(d / i) + " ");
        }
        i++;
      }
    }
 
    // Driver code
    var X = 10;
    var Y = 26;
    printModulus(X, Y);
 
// This code is contributed by rrrtnx.
  </script>


Output: 

1 16 2 8 4

 

Time Complexity Analysis O(sqrt(D)), where D is the difference between the values X and Y.
Auxiliary Space: O(1)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments