Saturday, January 25, 2025
Google search engine
HomeData Modelling & AIFind number of ways to form sets from N distinct things with...

Find number of ways to form sets from N distinct things with no set of size A or B

Given three numbers N, A, B. The task is to count the number of ways to select things such that there exists no set of size either A or B. Answer can be very large. So, output answer modulo 109+7. Note: Empty set is not consider as one of the way. Examples:

Input: N = 4, A = 1, B = 3 Output: 7 Explanation: The number of ways to form sets of size 2 are 6 (4C2). The number of ways to form sets of size 4 are 1 (4C4). Input: N = 10, A = 4, B = 9 Output: 803

Approach: The idea is to first find the number of ways including sets of size including A, B and empty sets. Then the remove the number of the sets of size A, B and empty sets. Below is the implementation of the above approach: 

CPP




// C++ program to find number of sets without size A and B
#include <bits/stdc++.h>
using namespace std;
#define mod (int)(1e9 + 7)
 
// Function to find a^m1
int power(int a, int m1)
{
    if (m1 == 0)
        return 1;
    else if (m1 == 1)
        return a;
    else if (m1 == 2)
        return (1LL * a * a) % mod;
    // If m1 is odd, then return a * a^m1/2 * a^m1/2
    else if (m1 & 1)
        return (1LL * a * power(power(a, m1 / 2), 2)) % mod;
    else
        return power(power(a, m1 / 2), 2) % mod;
}
 
// Function to find factorial of a number
int factorial(int x)
{
    int ans = 1;
    for (int i = 1; i <= x; i++)
        ans = (1LL * ans * i) % mod;
 
    return ans;
}
 
// Function to find inverse of x
int inverse(int x)
{
    return power(x, mod - 2);
}
 
// Function to find nCr
int binomial(int n, int r)
{
    if (r > n)
        return 0;
 
    int ans = factorial(n);
 
    ans = (1LL * ans * inverse(factorial(r))) % mod;
 
    ans = (1LL * ans * inverse(factorial(n - r))) % mod;
 
    return ans;
}
 
// Function to find number of sets without size a and b
int number_of_sets(int n, int a, int b)
{
    // First calculate all sets
    int ans = power(2, n);
 
    // Remove sets of size a
    ans = ans - binomial(n, a);
 
    if (ans < 0)
        ans += mod;
 
    // Remove sets of size b
    ans = ans - binomial(n, b);
 
    // Remove empty set
    ans--;
 
    if (ans < 0)
        ans += mod;
 
    // Return the required answer
    return ans;
}
 
// Driver code
int main()
{
    int N = 4, A = 1, B = 3;
 
    // Function call
    cout << number_of_sets(N, A, B);
 
    return 0;
}


Java




// Java program to find number of sets without size A and B
import java.util.*;
 
class GFG{
static final int mod =(int)(1e9 + 7);
  
// Function to find a^m1
static int power(int a, int m1)
{
    if (m1 == 0)
        return 1;
    else if (m1 == 1)
        return a;
    else if (m1 == 2)
        return (int) ((1L * a * a) % mod);
    // If m1 is odd, then return a * a^m1/2 * a^m1/2
    else if (m1 % 2 == 1)
        return (int) ((1L * a * power(power(a, m1 / 2), 2)) % mod);
    else
        return power(power(a, m1 / 2), 2) % mod;
}
  
// Function to find factorial of a number
static int factorial(int x)
{
    int ans = 1;
    for (int i = 1; i <= x; i++)
        ans = (int) ((1L * ans * i) % mod);
  
    return ans;
}
  
// Function to find inverse of x
static int inverse(int x)
{
    return power(x, mod - 2);
}
  
// Function to find nCr
static int binomial(int n, int r)
{
    if (r > n)
        return 0;
  
    int ans = factorial(n);
  
    ans = (int) ((1L * ans * inverse(factorial(r))) % mod);
  
    ans = (int) ((1L * ans * inverse(factorial(n - r))) % mod);
  
    return ans;
}
  
// Function to find number of sets without size a and b
static int number_of_sets(int n, int a, int b)
{
    // First calculate all sets
    int ans = power(2, n);
  
    // Remove sets of size a
    ans = ans - binomial(n, a);
  
    if (ans < 0)
        ans += mod;
  
    // Remove sets of size b
    ans = ans - binomial(n, b);
  
    // Remove empty set
    ans--;
  
    if (ans < 0)
        ans += mod;
  
    // Return the required answer
    return ans;
}
  
// Driver code
public static void main(String[] args)
{
    int N = 4, A = 1, B = 3;
  
    // Function call
    System.out.print(number_of_sets(N, A, B));
  
}
}
 
// This code contributed by sapnasingh4991


Python3




# Python3 program to find number of
# sets without size A and B
mod = 10**9 + 7
 
# Function to find a^m1
def power(a, m1):
    if (m1 == 0):
        return 1
    elif (m1 == 1):
        return a
    elif (m1 == 2):
        return (a * a) % mod
          
    # If m1 is odd, then return a * a^m1/2 * a^m1/2
    elif (m1 & 1):
        return (a * power(power(a, m1 // 2), 2)) % mod
    else:
        return power(power(a, m1 // 2), 2) % mod
 
# Function to find factorial of a number
def factorial(x):
    ans = 1
    for i in range(1, x + 1):
        ans = (ans * i) % mod
 
    return ans
 
# Function to find inverse of x
def inverse(x):
    return power(x, mod - 2)
 
# Function to find nCr
def binomial(n, r):
    if (r > n):
        return 0
 
    ans = factorial(n)
 
    ans = (ans * inverse(factorial(r))) % mod
 
    ans = (ans * inverse(factorial(n - r))) % mod
 
    return ans
 
# Function to find number of sets without size a and b
def number_of_sets(n, a, b):
     
    # First calculate all sets
    ans = power(2, n)
 
    # Remove sets of size a
    ans = ans - binomial(n, a)
 
    if (ans < 0):
        ans += mod
 
    # Remove sets of size b
    ans = ans - binomial(n, b)
 
    # Remove empty set
    ans -= 1
 
    if (ans < 0):
        ans += mod
 
    # Return the required answer
    return ans
 
# Driver code
if __name__ == '__main__':
    N = 4
    A = 1
    B = 3
 
    # Function call
    print(number_of_sets(N, A, B))
 
# This code is contributed by mohit kumar 29   


C#




// C# program to find number of sets without size A and B
using System;
 
class GFG{
static readonly int mod =(int)(1e9 + 7);
   
// Function to find a^m1
static int power(int a, int m1)
{
    if (m1 == 0)
        return 1;
    else if (m1 == 1)
        return a;
    else if (m1 == 2)
        return (int) ((1L * a * a) % mod);
    // If m1 is odd, then return a * a^m1/2 * a^m1/2
    else if (m1 % 2 == 1)
        return (int) ((1L * a * power(power(a, m1 / 2), 2)) % mod);
    else
        return power(power(a, m1 / 2), 2) % mod;
}
   
// Function to find factorial of a number
static int factorial(int x)
{
    int ans = 1;
    for (int i = 1; i <= x; i++)
        ans = (int) ((1L * ans * i) % mod);
   
    return ans;
}
   
// Function to find inverse of x
static int inverse(int x)
{
    return power(x, mod - 2);
}
   
// Function to find nCr
static int binomial(int n, int r)
{
    if (r > n)
        return 0;
   
    int ans = factorial(n);
   
    ans = (int) ((1L * ans * inverse(factorial(r))) % mod);
   
    ans = (int) ((1L * ans * inverse(factorial(n - r))) % mod);
   
    return ans;
}
   
// Function to find number of sets without size a and b
static int number_of_sets(int n, int a, int b)
{
    // First calculate all sets
    int ans = power(2, n);
   
    // Remove sets of size a
    ans = ans - binomial(n, a);
   
    if (ans < 0)
        ans += mod;
   
    // Remove sets of size b
    ans = ans - binomial(n, b);
   
    // Remove empty set
    ans--;
   
    if (ans < 0)
        ans += mod;
   
    // Return the required answer
    return ans;
}
   
// Driver code
public static void Main(String[] args)
{
    int N = 4, A = 1, B = 3;
   
    // Function call
    Console.Write(number_of_sets(N, A, B));
}
}
  
// This code is contributed by PrinciRaj1992


Javascript




const mod = 1e9 + 7;
 
// Function to find a^m1
function power(a, m1)
{
  if (m1 === 0) return 1;
  else if (m1 === 1) return a;
  else if (m1 === 2) return (a * a) % mod;
   
  // If m1 is odd, then return a * a^m1/2 * a^m1/2
  else if (m1 % 2 === 1) return (a * power(power(a, Math.floor(m1 / 2)), 2)) % mod;
  else return power(power(a, Math.floor(m1 / 2)), 2) % mod;
}
 
// Function to find factorial of a number
function factorial(x) {
  let ans = 1;
  for (let i = 1; i <= x; i++)
    ans = (ans * i) % mod;
 
  return ans;
}
 
// Function to find inverse of x
function inverse(x) {
  return power(x, mod - 2);
}
 
// Function to find nCr
function binomial(n, r) {
  if (r > n) return 0;
 
  let ans = factorial(n);
 
  ans = (ans * inverse(factorial(r))) % mod;
 
  ans = (ans * inverse(factorial(n - r))) % mod;
 
  return ans;
}
 
// Function to find number of sets without size a and b
function number_of_sets(n, a, b) {
  // First calculate all sets
  let ans = power(2, n);
 
  // Remove sets of size a
  ans = ans - binomial(n, a);
 
  if (ans < 0) ans = (ans + mod) % mod;
 
  // Remove sets of size b
  ans = ans - binomial(n, b);
 
  // Remove empty set
  ans--;
 
  if (ans < 0) ans = (ans + mod) % mod;
 
  // Return the required answer
  return ans;
}
 
// Example usage
const N = 4, A = 1, B = 3;
console.log(number_of_sets(N, A, B));
 
// This code is contributed by anskalyan3.


Output:

7

Time complexity: O(nlogn) because using a for loop and power function

Auxiliary Space: O(logn)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments