Sunday, October 12, 2025
HomeData Modelling & AIFind number of substrings of length k whose sum of ASCII value...

Find number of substrings of length k whose sum of ASCII value of characters is divisible by k

Given a string and a number k, the task is to find the number of substrings of length k whose sum of ASCII value of characters is divisible by k.

Examples:

 
Input : str = “bcgabc”, k = 3 
Output :
Substring “bcg” has sum of ASCII values 300 and “abc” has sum of ASCII values 294 which are divisible by 3.

Input : str = “adkf”, k = 3 
Output :

Brute Force Approach:

The brute force approach to solve this problem is to generate all possible substrings of length k from the given string and calculate the sum of ASCII values of characters for each substring. Then check whether the sum is divisible by k or not. If it is divisible by k, then count it as a valid substring. Finally, return the count of valid substrings.

Below is the implementation of the above approach:  

C++




#include<bits/stdc++.h>
using namespace std;
 
int count(string s, int k)
{
    int n = s.length();
    int cnt = 0;
    for (int i = 0; i <= n - k; i++)
    {
        int sum = 0;
        for (int j = i; j < i + k; j++)
            sum += s[j];
        if (sum % k == 0)
            cnt++;
    }
    return cnt;
}
 
int main()
{
    string s = "adkf";
    int k = 3;
    int ans = count(s, k);
    cout << ans;
    return 0;
}


Java




import java.util.*;
 
public class Main {
  public static int count(String s, int k) {
    int n = s.length();
    int cnt = 0;
    for (int i = 0; i <= n - k; i++) {
      int sum = 0;
      for (int j = i; j < i + k; j++)
        sum += s.charAt(j);
      if (sum % k == 0)
        cnt++;
    }
    return cnt;
  }
 
  public static void main(String[] args) {
    String s = "adkf";
    int k = 3;
    int ans = count(s, k);
    System.out.println(ans);
  }
}


Python3




def count(s, k):
    n = len(s)
    cnt = 0
    for i in range(n - k + 1):
        _sum = 0
        for j in range(i, i + k):
            _sum += ord(s[j])
        if _sum % k == 0:
            cnt += 1
    return cnt
 
s = "adkf"
k = 3
ans = count(s, k)
print(ans)


C#




using System;
 
class GFG {
    public static int Count(string s, int k) {
        int n = s.Length;
        int cnt = 0;
        for (int i = 0; i <= n - k; i++) {
            int sum = 0;
            for (int j = i; j < i + k; j++) {
                sum += s[j];
            }
            if (sum % k == 0) {
                cnt++;
            }
        }
        return cnt;
    }
 
    public static void Main(string[] args) {
        string s = "adkf";
        int k = 3;
        int ans = Count(s, k);
        Console.WriteLine(ans);
    }
}


Javascript




// JavaScript code
function count(s, k) {
    let n = s.length;
    let cnt = 0;
    for (let i = 0; i <= n - k; i++) {
        let sum = 0;
        for (let j = i; j < i + k; j++) {
            sum += s.charCodeAt(j);
        }
        if (sum % k === 0) {
            cnt++;
        }
    }
    return cnt;
}
 
let s = "adkf";
let k = 3;
let ans = count(s, k);
console.log(ans);


Output

1

Time Complexity: O(N^2)
Space Complexity: O(1)

Approach: First, we find the sum of ASCII value of characters of first substring of length k, then using sliding window technique subtract ASCII value of first character of the previous substring and add ASCII value of the current character. We will increase the counter at each step if sum is divisible by k.

Below is the implementation of the above approach:  

C++




// C++ program to find number of substrings
// of length k whose sum of ASCII value of
// characters is divisible by k
#include<bits/stdc++.h>
using namespace std;
 
int count(string s, int k)
{
     
    // Finding length of string
    int n = s.length();
    int d = 0 ,i;
    int count = 0 ;
     
    for (i = 0; i <n; i++)
        // finding sum of ASCII value of first
        // substring
        d += s[i] ;
     
    if (d % k == 0)
        count += 1 ;
     
    for (i = k; i < n; i++)
    {
     
        // Using sliding window technique to
        // find sum of ASCII value of rest of
        // the substring
        int prev = s[i-k];
        d -= prev;
        d += s[i];
     
     
     
        // checking if sum is divisible by k
        if (d % k == 0)
        count += 1;
    }
     
    return count ;
    }
     
    // Driver code
    int main()
    {
         
        string s = "bcgabc" ;
        int k = 3 ;
        int ans = count(s, k);
        cout<<(ans);
    }
    // This code is contributed by
    // Sahil_Shelangia


Java




// Java program to find number of substrings
// of length k whose sum of ASCII value of
// characters is divisible by k
 
 
public class GFG{
 
    static int count(String s, int k){
     
    // Finding length of string
    int n = s.length() ;
    int d = 0 ,i;
    int count = 0 ;
     
    for (i = 0; i <n; i++)
        // finding sum of ASCII value of first
        // substring
        d += s.charAt(i) ;
     
    if (d % k == 0)
        count += 1 ;
     
    for (i = k; i < n; i++)
    {
     
        // Using sliding window technique to
        // find sum of ASCII value of rest of
        // the substring
        int prev = s.charAt(i-k) ;
        d -= prev ;
        d += s.charAt(i) ;
     
     
     
        // checking if sum is divisible by k
        if (d % k == 0)
        count += 1 ;
    }
     
    return count ;
    }
     
    // Driver code
    public static void main(String[]args) {
         
        String s = "bcgabc" ;
        int k = 3 ;
        int ans = count(s, k);
        System.out.println(ans);
    }
    // This code is contributed by Ryuga
}


Python3




# Python3 program to find number of substrings
# of length k whose sum of ASCII value of
# characters is divisible by k
 
def count(s, k):
     
    # Finding length of string
    n = len(s)
    d, count = 0, 0
    for i in range(k):
         
        # finding sum of ASCII value of first
        # substring
        d += ord(s[i])
        if (d % k == 0):
            count += 1
            for i in range(k, n):
                 
                # Using sliding window technique to
                # find sum of ASCII value of rest of
                # the substring
                prev = ord(s[i-k])
                d -= prev
                d += ord(s[i])
                 
                # checking if sum is divisible by k
                if (d % k == 0):
                    count += 1
                    return count
# Driver code
s = "bcgabc"
k = 3
ans = count(s, k)
print(ans)


C#




// C# program to find number of substrings
// of length k whose sum of ASCII value of
// characters is divisible by k
  
  
using System;
public class GFG{
  
    static int count(string s, int k){
      
    // Finding length of string
    int n = s.Length ;
    int d = 0 ,i;
    int count = 0 ;
      
    for (i = 0; i <n; i++)
        // finding sum of ASCII value of first
        // substring
        d += s[i] ;
      
    if (d % k == 0)
        count += 1 ;
      
    for (i = k; i < n; i++)
    {
      
        // Using sliding window technique to
        // find sum of ASCII value of rest of
        // the substring
        int prev = s[i-k] ;
        d -= prev ;
        d += s[i] ;
      
      
      
        // checking if sum is divisible by k
        if (d % k == 0)
        count += 1 ;
    }
      
    return count ;
    }
      
    // Driver code
    public static void Main() {
          
        string s = "bcgabc" ;
        int k = 3 ;
        int ans = count(s, k);
        Console.Write(ans);
    }
   
}


Javascript




<script>
 
// JavaScript program to find number of
// substrings of length k whose sum of
// ASCII value of characters is divisible by k
function count(s, k)
{
     
    // Finding length of string
    var n = s.length;
    var d = 0, i;
    var count = 0;
     
    for(i = 0; i < n; i++)
     
        // Finding sum of ASCII value of first
        // substring
        d += s[i].charCodeAt(0);
         
        if (d % k === 0)
        {
            count += 1;
        }
         
        for(i = k; i < n; i++)
        {
             
            // Using sliding window technique to
            // find sum of ASCII value of rest of
            // the substring
            var prev = s[i - k];
            d -= prev.charCodeAt(0);
            d += s[i].charCodeAt(0);
             
            // checking if sum is divisible by k
            if (d % k === 0)
                count += 1;
        }
         
    return count;
}
 
// Driver code
var s = "bcgabc";
var k = 3;
var ans = count(s, k);
 
document.write(ans);
 
// This code is contributed by rdtank
 
</script>


Output

2

Time Complexity: O(n), where n is the length of the given string.
Auxiliary Space: O(1), no extra space is required, so it is a constant.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32352 POSTS0 COMMENTS
Milvus
87 POSTS0 COMMENTS
Nango Kala
6720 POSTS0 COMMENTS
Nicole Veronica
11885 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11941 POSTS0 COMMENTS
Shaida Kate Naidoo
6840 POSTS0 COMMENTS
Ted Musemwa
7105 POSTS0 COMMENTS
Thapelo Manthata
6795 POSTS0 COMMENTS
Umr Jansen
6795 POSTS0 COMMENTS