The given problem involves finding a number X that has all the integers in a given array as its divisors except for 1 and X itself. The array contains N integers that are all divisors of X, and the goal is to find X. If there is no such number, the function should return -1.
To solve this problem, we can use the fact that the product of all the integers in the array will give us X^2. Since we know that each integer in the array is a divisor of X, we can take the square root of X^2 to get X. Therefore, we can multiply all the integers in the array to get X^2, take the square root of X^2 to get X, and then check if all the integers in the array are divisors of X. If they are, we return X, otherwise, we return -1.
To implement this algorithm, we can first sort the array to make sure that the smallest and largest integers are multiplied to get X^2. We can then compute X by taking the square root of the product of all the integers in the array. Finally, we can check if all the integers in the array are divisors of X by iterating through the array and checking if X is divisible by each integer. If X is divisible by all integers in the array, we return X. Otherwise, we return -1.
Examples:Â
Input: arr[] = {2, 10, 5, 4}Â
Output: 20ÂInput: arr[] = {2, 10, 5}Â
Output: 20ÂInput: arr[] = {2, 15}Â
Output: -1Â
Approach: Sort the given N divisors and the number X will be the first number * last number in the sorted array. Cross-check if the X contradicts the given statement or not by storing all the divisors of X except 1 and X in another array and if the formed array and given array are not same then print -1, else print X.
Below is the implementation of the above approach:Â
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; Â
// Function that returns X int findX( int a[], int n) {     // Sort the given array     sort(a, a + n); Â
    // Get the possible X     int x = a[0] * a[n - 1]; Â
    // Container to store divisors     vector< int > vec; Â
    // Find the divisors of x     for ( int i = 2; i * i <= x; i++)     {         // Check if divisor         if (x % i == 0)         {             vec.push_back(i);             if ((x / i) != i)                 vec.push_back(x / i);         }     }          // sort the vec because a is sorted     // and we have to compare all the elements     sort(vec.begin(), vec.end()); Â
    // if size of both vectors is not same     // then we are sure that both vectors     // can't be equal     if (vec.size() != n)         return -1;     else     {         // Check if a and vec have         // same elements in them         int i = 0;         for ( auto it : vec)         {             if (a[i++] != it)                 return -1;         }     } Â
    return x; } Â
// Driver code int main() {     int a[] = { 2, 5, 4, 10 };     int n = sizeof (a) / sizeof (a[0]);        // Function call     cout << findX(a, n); Â
    return 0; } |
Java
// Java implementation of the approach import java.util.*; Â
class GFG { Â
    // Function that returns X     static int findX( int a[], int n)     {         // Sort the given array         Arrays.sort(a); Â
        // Get the possible X         int x = a[ 0 ] * a[n - 1 ]; Â
        // Container to store divisors         Vector<Integer> vec = new Vector<Integer>(); Â
        // Find the divisors of x         for ( int i = 2 ; i * i <= x; i++)         {             // Check if divisor             if (x % i == 0 )             {                 vec.add(i);                 if ((x / i) != i)                     vec.add(x / i);             }         }         // sort the vec because a is sorted         // and we have to compare all the elements         Collections.sort(vec); Â
        // if size of both vectors is not same         // then we are sure that both vectors         // can't be equal         if (vec.size() != n)             return - 1 ;         else {             // Check if a and vec have             // same elements in them             int i = 0 ;             for ( int it : vec) {                 if (a[i++] != it)                     return - 1 ;             }         } Â
        return x;     } Â
    // Driver code     public static void main(String[] args)     {         int a[] = { 2 , 5 , 4 , 10 };         int n = a.length; Â
        // Function call         System.out.print(findX(a, n));     } } Â
// This code is contributed by 29AjayKumar |
Python3
# Python3 implementation of the approach # Function that returns X import math Â
Â
def findX( list , int ):     # Sort the given array     list .sort() Â
    # Get the possible X     x = list [ 0 ] * list [ int - 1 ] Â
    # Container to store divisors     vec = [] Â
    # Find the divisors of x     i = 2     while (i * i < = x):         # Check if divisor         if (x % i = = 0 ):             vec.append(i)             if ((x / / i) ! = i):                 vec.append(x / / i)         i + = 1 Â
    # sort the vec because a is sorted         # and we have to compare all the elements     vec.sort()     # if size of both vectors is not same     # then we are sure that both vectors     # can't be equal     if ( len (vec) ! = int ):         return - 1     else :         # Check if a and vec have         # same elements in them         j = 0         for it in range ( int ):             if (a[j] ! = vec[it]):                 return - 1             else :                 j + = 1     return x Â
Â
# Driver code a = [ 2 , 5 , 4 , 10 ] n = len (a) Â
# Function call print (findX(a, n)) |
C#
// C# implementation of the approach using System; using System.Collections.Generic; Â
class GFG { Â
    // Function that returns X     static int findX( int [] a, int n)     {         // Sort the given array         Array.Sort(a); Â
        // Get the possible X         int x = a[0] * a[n - 1]; Â
        // Container to store divisors         List< int > vec = new List< int >(); Â
        // Find the divisors of a number         for ( int i = 2; i * i <= x; i++)         {             // Check if divisor             if (x % i == 0) {                 vec.Add(i);                 if ((x / i) != i)                     vec.Add(x / i);             }         } Â
        // sort the vec because a is sorted         // and we have to compare all the elements         vec.Sort(); Â
        // if size of both vectors is not same         // then we are sure that both vectors         // can't be equal         if (vec.Count != n)         {             return -1;         }         else         {             // Check if a and vec have             // same elements in them             int i = 0;             foreach ( int it in vec)             {                 if (a[i++] != it)                     return -1;             }         } Â
        return x;     } Â
    // Driver code     public static void Main(String[] args)     {         int [] a = { 2, 5, 4, 10 };         int n = a.Length;                // Function call         Console.Write(findX(a, n));     } } Â
// This code is contributed by 29AjayKumar |
Javascript
<script> Â
// Javascript implementation of the approach Â
// Function that returns X function findX(a, n) {     // Sort the given array     a.sort((x,y) => x - y); Â
    // Get the possible X     let x = a[0] * a[n - 1]; Â
    // Container to store divisors     let vec = []; Â
    // Find the divisors of x     for (let i = 2; i * i <= x; i++)     {         // Check if divisor         if (x % i == 0)         {             vec.push(i);             if (parseInt(x / i) != i)                 vec.push(parseInt(x / i));         }     }          // sort the vec because a is sorted     // and we have to compare all the elements     vec.sort((x,y) => x - y); Â
    // if size of both vectors is not same     // then we are sure that both vectors     // can't be equal     if (vec.length != n)         return -1;     else     {         // Check if a and vec have         // same elements in them         let i = 0;         for (let j = 0; j < vec.length; j++)         {             if (a[i++] != vec[j])                 return -1;         }     } Â
    return x; } Â
// Driver code     let a = [ 2, 5, 4, 10 ];     let n = a.length;        // Function call     document.write(findX(a, n));      </script> |
20
Time Complexity:
- Sorting the array takes O(n log n) time.
- Finding the divisors of x takes O(sqrt(x)) time.
- Sorting the vector takes O(n log n) time.
- Comparing the elements of the vector and array takes O(n) time.
Therefore, the time complexity of the function is O(n log n + sqrt(x) + n log n + n) which can be simplified to O(sqrt(x) + n log n).
Auxiliary Space:
- The function uses a vector to store the divisors of x, which has a maximum size of sqrt(x).
- Therefore, the auxiliary space used by the function is O(sqrt(x)).
Space Complexity:
- The input array has a space complexity of O(n).
- The auxiliary space used by the function is O(sqrt(x)).
- Therefore, the space complexity of the function is O(n + sqrt(x)).
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!