Friday, January 10, 2025
Google search engine
HomeData Modelling & AIFind Nth term of the series 1, 8, 54, 384…

Find Nth term of the series 1, 8, 54, 384…

Given a number N. The task is to write a program to find the Nth term in the below series: 
 

1, 8, 54, 384...

Examples: 
 

Input : 3
Output : 54
For N = 3
Nth term = ( 3*3) * 3!
         = 54

Input : 2 
Output : 8

 

On observing carefully, the Nth term in the above series can be generalized as: 
 

Nth term = ( N*N ) * ( N! )

Below is the implementation of the above approach:
 

C++




// CPP program to find N-th term of the series:
// 1, 8, 54, 384...
#include <iostream>
using namespace std;
 
// calculate factorial of N
int fact(int N)
{
    int i, product = 1;
    for (i = 1; i <= N; i++)
        product = product * i;
    return product;
}
 
// calculate Nth term of series
int nthTerm(int N)
{
    return (N * N) * fact(N);
}
 
// Driver Function
int main()
{
    int N = 4;
 
    cout << nthTerm(N);
 
    return 0;
}


Java




// Java program to find N-th term of the series:
// 1, 8, 54, 384...
 
import java.io.*;
 
// Main class for main method
class GFG {
    public static int fact(int N)
    {
        int i, product = 1;
        // Calculate factorial of N
        for (i = 1; i <= N; i++)
            product = product * i;
        return product;
    }
    public static int nthTerm(int N)
    {
        // By using above formula
        return (N * N) * fact(N);
    }
 
    public static void main(String[] args)
    {
        int N = 4; // 4th term is 384
 
        System.out.println(nthTerm(N));
    }
}


Python 3




# Python 3 program to find
# N-th term of the series:
# 1, 8, 54, 384...
 
# calculate factorial of N
def fact(N):
     
    product = 1
    for i in range(1, N + 1):
        product = product * i
    return product
 
# calculate Nth term of series
def nthTerm(N):
    return (N * N) * fact(N)
 
# Driver Code
if __name__ =="__main__":
    N = 4
    print(nthTerm(N))
 
# This code is contributed
# by ChitraNayal


C#




// C# program to find N-th
// term of the series:
// 1, 8, 54, 384...
using System;
 
class GFG
{
public static int fact(int N)
{
    int i, product = 1;
     
    // Calculate factorial of N
    for (i = 1; i <= N; i++)
        product = product * i;
    return product;
}
 
public static int nthTerm(int N)
{
    // By using above formula
    return (N * N) * fact(N);
}
 
// Driver Code
public static void Main(String[] args)
{
    int N = 4; // 4th term is 384
 
    Console.WriteLine(nthTerm(N));
}
}
 
// This code is contributed
// by Kirti_Mangal


PHP




<?php
// PHP program to find N-th
/// term of the series:
// 1, 8, 54, 384...
 
// calculate factorial of N
function fact($N)
{
    $product = 1;
    for ($i = 1; $i <= $N; $i++)
        $product = $product * $i;
    return $product;
}
 
// calculate Nth term of series
function nthTerm($N)
{
    return ($N * $N) * fact($N);
}
 
// Driver Code
$N = 4;
 
echo nthTerm($N);
 
// This code is contributed
// by ChitraNayal
?>


Javascript




<script>
 
// JavaScript program to find N-th term of the series:
// 1, 8, 54, 384...
 
// calculate factorial of N
function fact( N)
{
    let i, product = 1;
    for (i = 1; i <= N; i++)
        product = product * i;
    return product;
}
 
// calculate Nth term of series
function nthTerm( N)
{
    return (N * N) * fact(N);
}
 
// Driver Function
 
    let N = 4;
    document.write(nthTerm(N));
     
// This code contributed by Rajput-Ji
 
</script>


Output: 

384

 

Time Complexity: O(N)

Space Complexity: O(1) because using constant variables
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments