Thursday, April 24, 2025
Google search engine
HomeData Modelling & AIFind Nth term of series 1, 4, 15, 72, 420…

Find Nth term of series 1, 4, 15, 72, 420…

Given a number N. The task is to write a program to find the Nth term in the below series: 

1, 4, 15, 72, 420…

Examples:  

Input: 3
Output: 15
Explanation: For N = 3, we know that the factorial of 3 is 6 Nth term = 6*(3+2)/2

Input: 6
Output: 2880
Explanation: For N = 6, we know that the factorial of 6 is 720 Nth term = 620*(6+2)/2 = 2880

The idea is to first find the factorial of the given number N, that is N!. Now the N-th term in the above series will be:

N-th term = N! * (N + 2)/2

Below is the implementation of the above approach: 

C++




// CPP program to find N-th term of the series:
// 1, 4, 15, 72, 420…
#include <iostream>
using namespace std;
 
// Function to find factorial of N
int factorial(int N)
{
    int fact = 1;
 
    for (int i = 1; i <= N; i++)
        fact = fact * i;
         
    // return factorial of N        
    return fact;
}
 
// calculate Nth term of series
int nthTerm(int N)
{
    return (factorial(N) * (N + 2) / 2);
}
 
// Driver Function
int main()
{
    int N = 6;
     
    cout << nthTerm(N);
     
    return 0;
}


Java




// Java program to find N-th
// term of the series:
// 1, 4, 15, 72, 420
import java.util.*;
import java.lang.*;
import java.io.*;
 
class GFG
{
     
// Function to find factorial of N
static int factorial(int N)
{
    int fact = 1;
 
    for (int i = 1; i <= N; i++)
        fact = fact * i;
         
    // return factorial of N    
    return fact;
}
 
// calculate Nth term of series
static int nthTerm(int N)
{
    return (factorial(N) * (N + 2) / 2);
}
 
// Driver Code
public static void main(String args[])
{
    int N = 6;
     
    System.out.println(nthTerm(N));
}
}
 
// This code is contributed by Subhadeep


Python3




# Python 3 program to find
# N-th term of the series:
# 1, 4, 15, 72, 420…
 
# Function for finding
# factorial of N
def factorial(N) :
    fact = 1
    for i in range(1, N + 1) :
        fact = fact * i
 
    # return factorial of N
    return fact
 
# Function for calculating
# Nth term of series
def nthTerm(N) :
 
    # return nth term
    return (factorial(N) * (N + 2) // 2)
 
# Driver code
if __name__ == "__main__" :
     
    N = 6
 
    # Function Calling
    print(nthTerm(N))
 
# This code is contributed
# by ANKITRAI1


C#




// C# program to find N-th
// term of the series:
// 1, 4, 15, 72, 420
using System;
 
class GFG
{
     
// Function to find factorial of N
static int factorial(int N)
{
    int fact = 1;
 
    for (int i = 1; i <= N; i++)
        fact = fact * i;
         
    // return factorial of N    
    return fact;
}
 
// calculate Nth term of series
static int nthTerm(int N)
{
    return (factorial(N) * (N + 2) / 2);
}
 
// Driver Code
public static void Main()
{
    int N = 6;
     
    Console.Write(nthTerm(N));
}
}
 
// This code is contributed by ChitraNayal


PHP




<?php
// PHP program to find
// N-th term of the series:
// 1, 4, 15, 72, 420…
 
// Function for finding
// factorial of N
function factorial($N)
{
    $fact = 1;
    for($i = 1; $i <= $N; $i++)
        $fact = $fact * $i;
 
    // return factorial of N
    return $fact;
}
 
// Function for calculating
// Nth term of series
function nthTerm($N)
{
 
    // return nth term
    return (factorial($N) *
           ($N + 2) / 2);
}
 
// Driver code
$N = 6;
 
// Function Calling
echo nthTerm($N);
 
// This code is contributed
// by mits
?>


Javascript




<script>
 
// JavaScript program to find N-th term of the series:
// 1, 4, 15, 72, 420…
 
// Function to find factorial of N
function factorial( N)
{
    let fact = 1;
 
    for (let i = 1; i <= N; i++)
        fact = fact * i;
         
    // return factorial of N        
    return fact;
}
 
// calculate Nth term of series
function nthTerm(N)
{
    return (factorial(N) * (N + 2) / 2);
}
// Driver code
 
    let N = 6;
   document.write( nthTerm(N) );
 
// This code contributed by aashish1995
 
</script>


Output

2880

Time Complexity: O(n)
Auxiliary Space: O(1)

Another approach :(Using recursion) 

C++




// CPP program to find N-th term of the series:
// 1, 4, 15, 72, 420…
// Using recursion
#include <iostream>
using namespace std;
 
// Function to find factorial of N
// with recursion
int factorial(int N)
{
    // base condition
    if( N == 0 || N == 1 )
        return 1;
    // use recursion
    return N * factorial( N - 1 );
}
 
// calculate Nth term of series
int nthTerm(int N)
{
    return (factorial(N) * (N + 2) / 2);
}
 
// Driver Function
int main()
{
    int N = 6;
     
    cout << nthTerm(N);
     
    return 0;
}


Java




// Java program to find N-th
// term of the series:
// 1, 4, 15, 72, 420
import java.util.*;
import java.lang.*;
import java.io.*;
 
class GFG
{
     
// Function to find factorial of N
static int factorial(int N)
{
    // base condition
    if( N == 0 || N == 1 )
        return 1;
    // use recursion
    return N * factorial( N - 1 );
}
 
// calculate Nth term of series
static int nthTerm(int N)
{
    return (factorial(N) * (N + 2) / 2);
}
 
// Driver Code
public static void main(String args[])
{
    int N = 6;
     
    System.out.println(nthTerm(N));
}
}


Python3




# Python3 program to find
# N-th term of the series:
# 1, 4, 15, 72, 420…
# Using recursion
 
# Function to find factorial
# of N with recursion
def factorial(N):
 
    # base condition
    if N == 0 or N == 1:
        return 1
 
    # use recursion
    return N * factorial(N - 1)
 
def nthTerm(N):
     
    # calculate Nth term of series
    return (factorial(N) * (N + 2) // 2)
 
# Driver code
N = 6
print(nthTerm(N))
 
# This code is contributed
# by Shrikant13


C#




// C# program to find N-th
// term of the series:
// 1, 4, 15, 72, 420
using System;
 
class GFG
{
     
// Function to find factorial of N
static int factorial(int N)
{
    // base condition
    if( N == 0 || N == 1 )
        return 1;
    // use recursion
    return N * factorial( N - 1 );
}
 
// calculate Nth term of series
static int nthTerm(int N)
{
    return (factorial(N) * (N + 2) / 2);
}
 
// Driver Code
public static void Main()
{
    int N = 6;
     
    Console.Write(nthTerm(N));
}
}
 
// This code is contributed by ChitraNayal


PHP




<?php
// PHP program to find
// N-th term of the series:
// 1, 4, 15, 72, 420…
 
// Function to find factorial
// of N with recursion
function factorial($N)
{
    // base condition
    if($N == 0 or $N == 1)
        return 1;
         
    // use recursion
    return $N * factorial($N - 1);
}
 
// calculate Nth term of series
function nthTerm($N)
{
    return (factorial($N) *
           ($N + 2) / 2);
}
 
// Driver Code
$N = 6;
 
echo nthTerm($N);
 
// This code is contributed
// by Shashank
?>


Javascript




<script>
 
// Javascript program to find N-th
// term of the series:
// 1, 4, 15, 72, 420
 
// Function to find factorial of N
function factorial(N)
{
     
    // Base condition
    if (N == 0 || N == 1)
        return 1;
         
    // Use recursion
    return N * factorial(N - 1);
}
 
// Calculate Nth term of series
function nthTerm(N)
{
    return(factorial(N) * (N + 2) / 2);
}
 
// Driver Code
let N = 6;
 
document.write(nthTerm(N));
 
// This code is contributed by avanitrachhadiya2155
 
</script>


Output

2880

Time complexity: O(N)
Auxiliary Space: O(N), for recursion call stack.

Note: Above code wouldn’t work for large values of N. To find the values for large N, use the concept of Factorial for large numbers.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments