Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIFind Nth smallest number having exactly 4 divisors

Find Nth smallest number having exactly 4 divisors

Given a positive integer N, the task is to find the Nth smallest number in the sequence which is having exactly 4 divisors.

Examples:

Input: 4
Output: 14
Explanation: The numbers in the sequence that has 4 divisors are 6, 8, 10, 14, …, the fourth number in the sequence is 14.

Input: 24
Output: 94

 

Approach: This problem can be solved by observing that the number i having a prime factorization of p1a1 * p2a2 * p3a3…pkak, then the number of divisors of i is (a1+1)(a2+1)…(ak+1). So for i to have exactly 4 divisors, it should be equal to the product of two distinct primes or some prime number raised to the power 3. Follow the steps below to solve the problem: 

  • Initialize arrays divs[] and vis[] to store the number of divisors of any number and to check if given number is considered or not respectively.
  • Initialize a variable cnt as 0 to store number of elements having exactly 4 divisors.
  • Now, use the sieve of Eratosthenes algorithm.
  • Iterate while cnt is less than n, using a variable i start from 2:
    • If i is prime:
      • Iterate in the range [2*i, 1000000] using the variable j with increment of i:
        • If the number j is already considered, then continue.
        • Update vis[j] as true and initialize variables currNum as j and count as 0.
        • Divide the currNum by i while currNum % i is equal to 0, increment div[j] and count by 1. 
        • If currNum is equal to 1, count is equal to 3 and divs[j] is equal to 3, then increment cnt by 1.
        • Otherwise, if currNum is not equal to 1, count is equal to 1, divs[j] is equal to 1 and divs[currNum] is equal to 0, then increment cnt by 1.
        • If cnt is equal to N, then print j and return.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the nth number which
// has exactly 4 divisors
int nthNumber(int n)
{
 
    // The divs[] array to store number of
    // divisors of every element
    int divs[1000000];
 
    // The vis[] array to check if given number
    // is considered or not
    bool vis[1000000];
 
    // The cnt stores number of elements having
    // exactly 4 divisors
    int cnt = 0;
 
    // Iterate while cnt less than n
    for (int i = 2; cnt < n; i++) {
 
        // If i is a prime
        if (divs[i] == 0) {
 
            // Iterate in the range [2*i, 1000000] with
            // increment of i
            for (int j = 2 * i; j < 1000000; j += i) {
 
                // If the number j is already considered
                if (vis[j]) {
                    continue;
                }
 
                vis[j] = 1;
 
                int currNum = j;
                int count = 0;
 
                // Dividing currNum by i until currNum % i is
                // equal to 0
                while (currNum % i == 0) {
                    divs[j]++;
                    currNum = currNum / i;
                    count++;
                }
 
                // Case a single prime in its factorization
                if (currNum == 1 && count == 3 && divs[j] == 3) {
                    cnt++;
                }
 
                else if (currNum != 1
                         && divs[currNum] == 0
                         && count == 1
                         && divs[j] == 1) {
                    // Case of two distinct primes which
                    // divides j exactly once each
                    cnt++;
                }
 
                if (cnt == n) {
                    return j;
                }
            }
        }
    }
 
    return -1;
}
 
// Driver Code
int main()
{
    // Given Input
    int N = 24;
 
    // Function Call
    cout << nthNumber(N) << endl;
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
 
class GFG {
 
    // Function to find the nth number which
    // has exactly 4 divisors
    static int nthNumber(int n)
    {
 
        // The divs[] array to store number of
        // divisors of every element
        int divs[] = new int[1000000];
 
        // The vis[] array to check if given number
        // is considered or not
        boolean vis[] = new boolean[1000000];
 
        // The cnt stores number of elements having
        // exactly 4 divisors
        int cnt = 0;
 
        // Iterate while cnt less than n
        for (int i = 2; cnt < n; i++) {
 
            // If i is a prime
            if (divs[i] == 0) {
 
                // Iterate in the range [2*i, 1000000] with
                // increment of i
                for (int j = 2 * i; j < 1000000; j += i) {
 
                    // If the number j is already considered
                    if (vis[j]) {
                        continue;
                    }
 
                    vis[j] = true;
 
                    int currNum = j;
                    int count = 0;
 
                    // Dividing currNum by i until currNum %
                    // i is equal to 0
                    while (currNum % i == 0) {
                        divs[j]++;
                        currNum = currNum / i;
                        count++;
                    }
 
                    // Case a single prime in its
                    // factorization
                    if (currNum == 1 && count == 3
                        && divs[j] == 3) {
                        cnt++;
                    }
 
                    else if (currNum != 1
                             && divs[currNum] == 0
                             && count == 1
                             && divs[j] == 1) {
                        // Case of two distinct primes which
                        // divides j exactly once each
                        cnt++;
                    }
 
                    if (cnt == n) {
                        return j;
                    }
                }
            }
        }
 
        return -1;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        // Given Input
        int N = 24;
 
        // Function Call
        System.out.println(nthNumber(N));
    }
}
 
// This code is contributed by Potta Lokesh


Python3




# Python program for the above approach
 
# Function to find the nth number which
# has exactly 4 divisors
def nthNumber(n):
 
    # The divs[] array to store number of
    # divisors of every element
    divs = [0 for i in range(1000000)];
 
    # The vis[] array to check if given number
    # is considered or not
    vis = [0 for i in range(1000000)];
 
    # The cnt stores number of elements having
    # exactly 4 divisors
    cnt = 0;
 
    # Iterate while cnt less than n
    for i in range(2, n):
 
        # If i is a prime
        if (divs[i] == 0):
 
            # Iterate in the range [2*i, 1000000] with
            # increment of i
            for j in range(2 * i, 1000000):
 
                # If the number j is already considered
                if (vis[j]):
                    continue;
 
                vis[j] = 1;
 
                currNum = j;
                count = 0;
 
                # Dividing currNum by i until currNum % i is
                # equal to 0
                while (currNum % i == 0):
                    divs[j] += 1;
                    currNum = currNum // i;
                    count += 1;
     
                # Case a single prime in its factorization
                if (currNum == 1 and count == 3 and divs[j] == 3):
                    cnt += 1
                elif (currNum != 1
                    and divs[currNum] == 0
                    and count == 1
                    and divs[j] == 1):
                 
                    # Case of two distinct primes which
                    # divides j exactly once each
                    cnt += 1
 
                if (cnt == n):
                    return j;
 
    return -1;
 
# Driver Code
 
# Given Input
N = 24;
 
# Function Call
print(nthNumber(N));
 
# This code is contributed by gfgking.


C#




// C# program for the above approach
using System;
 
// Function to find minimum number of
// elements required to obtain sum K
class GFG{
 
// Function to find the nth number which
// has exactly 4 divisors
static int nthNumber(int n)
{
     
    // The divs[] array to store number of
    // divisors of every element
    int[] divs = new int[1000000];
 
    // The vis[] array to check if given number
    // is considered or not
    int[] vis  = new int[1000000];
 
    // The cnt stores number of elements having
    // exactly 4 divisors
    int cnt = 0;
 
    // Iterate while cnt less than n
    for(int i = 2; cnt < n; i++)
    {
         
        // If i is a prime
        if (divs[i] == 0)
        {
             
            // Iterate in the range [2*i, 1000000] with
            // increment of i
            for(int j = 2 * i; j < 1000000; j += i)
            {
                 
                // If the number j is already considered
                if (vis[j] != 0)
                {
                    continue;
                }
 
                vis[j] = 1;
 
                int currNum = j;
                int count = 0;
 
                // Dividing currNum by i until currNum % i is
                // equal to 0
                while (currNum % i == 0)
                {
                    divs[j]++;
                    currNum = currNum / i;
                    count++;
                }
 
                // Case a single prime in its factorization
                if (currNum == 1 && count == 3 && divs[j] == 3)
                {
                    cnt++;
                }
 
                else if (currNum != 1 && divs[currNum] == 0 &&
                           count == 1 && divs[j] == 1)
                {
                     
                    // Case of two distinct primes which
                    // divides j exactly once each
                    cnt++;
                }
 
                if (cnt == n)
                {
                    return j;
                }
            }
        }
    }
    return -1;
}
 
// Driver Code
static public void Main ()
{
     
    // Given Input
    int N = 24;
 
    // Function Call
    Console.Write(nthNumber(N));
}
}
 
// This code is contributed by sanjoy_62


Javascript




<script>
 
// JavaScript program for the above approach
 
// Function to find the nth number which
// has exactly 4 divisors
function nthNumber(n)
{
     
    // The divs[] array to store number of
    // divisors of every element
    let divs = new Array(1000000);
    for(var i = 0; i < divs.length; i++)
    {
        divs[i] = 0;
    }
     
    // The vis[] array to check if given number
    // is considered or not
    let vis = new Array(1000000);
    for(var i = 0; i < vis.length; i++)
    {
        vis[i] = 0;
    }
 
    // The cnt stores number of elements having
    // exactly 4 divisors
    let cnt = 0;
 
    // Iterate while cnt less than n
    for(let i = 2; cnt < n; i++)
    {
         
        // If i is a prime
        if (divs[i] == 0)
        {
             
            // Iterate in the range [2*i, 1000000] with
            // increment of i
            for(let j = 2 * i; j < 1000000; j += i)
            {
                 
                // If the number j is already considered
                if (vis[j])
                {
                    continue;
                }
 
                vis[j] = true;
 
                let currNum = j;
                let count = 0;
 
                // Dividing currNum by i until currNum %
                // i is equal to 0
                while (currNum % i == 0)
                {
                    divs[j]++;
                    currNum = Math.floor(currNum / i);
                    count++;
                }
 
                // Case a single prime in its
                // factorization
                if (currNum == 1 && count == 3 &&
                    divs[j] == 3)
                {
                    cnt++;
                }
 
                else if (currNum != 1 && divs[currNum] == 0 &&
                           count == 1 && divs[j] == 1)
                {
                     
                    // Case of two distinct primes which
                    // divides j exactly once each
                    cnt++;
                }
 
                if (cnt == n)
                {
                    return j;
                }
            }
        }
    }
    return -1;
}
 
// Driver Code
 
// Given Input
let N = 24;
 
// Function Call
document.write(nthNumber(N));
 
// This code is contributed by code_hunt
 
</script>


Output

94

Time Complexity: O(Nlog(log(N))), where N is 1000000.
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments