Wednesday, January 8, 2025
Google search engine
HomeData Modelling & AIFind n-th term of series 3, 9, 21, 41, 71…

Find n-th term of series 3, 9, 21, 41, 71…

Given a mathematical series as 3, 9, 21, 41, 71… For a given integer n, you have to find the nth number of this series. 
Examples : 
 

Input : n = 4 
Output : 41

Input : n = 2
Output : 9

 

Our first task for solving this problem is to crack the series. If you will gave a closer look on the series, for a general n-th term the value will be (?n2)+(?n)+1, where

So, for calculating any n-th term of given series say f(n) we have: 
f(n) = (?n2)+(?n)+1 
= ( ((n*(n+1)*(2n+1))/6) + (n*(n+1)/2) + 1 
= (n3+ 3n2 + 2n + 3 ) /3
 

 

C++




// Program to calculate
// nth term of a series
#include <bits/stdc++.h>
using namespace std;
 
// func for calualtion
int seriesFunc(int n)
{
    // for summation of square
    // of first n-natural nos.
    int sumSquare = (n * (n + 1)
                  * (2 * n + 1)) / 6;
 
    // summation of first n natural nos.
    int sumNatural = (n * (n + 1) / 2);
 
    // return result
    return (sumSquare + sumNatural + 1);
}
 
// Driver Code
int main()
{
    int n = 8;   
    cout << seriesFunc(n) << endl;
     
    n = 13;
    cout << seriesFunc(13);
     
    return 0;
}


Java




// Java Program to calculate
// nth term of a series
import java.io.*;
 
class GFG
{
    // func for calualtion
    static int seriesFunc(int n)
    {
        // for summation of square
        // of first n-natural nos.
        int sumSquare = (n * (n + 1)
                        * (2 * n + 1)) / 6;
     
        // summation of first n natural nos.
        int sumNatural = (n * (n + 1) / 2);
     
        // return result
        return (sumSquare + sumNatural + 1);
    }
     
    // Driver Code
    public static void main(String args[])
    {
        int n = 8;
        System.out.println(seriesFunc(n));
         
        n = 13;
        System.out.println(seriesFunc(13));
    }
}
 
// This code is contributed by Nikita Tiwari.


Python3




# Program to calculate
# nth term of a series
 
# func for calualtion
def seriesFunc(n):
 
    # for summation of square
    # of first n-natural nos.
    sumSquare = (n * (n + 1) *
                (2 * n + 1)) / 6
 
    # summation of first n
    # natural nos.
    sumNatural = (n * (n + 1) / 2)
 
    # return result
    return (sumSquare + sumNatural + 1)
 
# Driver Code
n = 8
print (int(seriesFunc(n)))
 
n = 13
print (int(seriesFunc(n)))
 
# This is code is contributed by Shreyanshi Arun.


C#




// C# program to calculate
// nth term of a series
using System;
 
class GFG
{
    // Function for calualtion
    static int seriesFunc(int n)
    {
        // For summation of square
        // of first n-natural nos.
        int sumSquare = (n * (n + 1)
                        * (2 * n + 1)) / 6;
     
        // summation of first n natural nos.
        int sumNatural = (n * (n + 1) / 2);
     
        // return result
        return (sumSquare + sumNatural + 1);
    }
     
    // Driver Code
    public static void Main()
    {
        int n = 8;
        Console.WriteLine(seriesFunc(n));
         
        n = 13;
        Console.WriteLine(seriesFunc(13));
    }
}
 
// This code is contributed by vt_m.


PHP




<?php
// Program to calculate
// nth term of a series
 
// func for calualtion
function seriesFunc($n)
{
    // for summation of square
    // of first n-natural nos.
    $sumSquare = ($n * ($n + 1)
                * (2 * $n + 1)) / 6;
 
    // summation of first n natural nos.
    $sumNatural = ($n * ($n + 1) / 2);
 
    // return result
    return ($sumSquare + $sumNatural + 1);
}
 
// Driver Code
$n = 8;
echo(seriesFunc($n) . "\n");
     
$n = 13;
echo(seriesFunc($n) . "\n");
 
// This code is contributed by Ajit.
?>


Javascript




<script>
 
// JavaScript Program to calculate
// nth term of a series
 
    // func for calualtion
    function seriesFunc(n)
    {
        // for summation of square
        // of first n-natural nos.
        let sumSquare = (n * (n + 1)
                        * (2 * n + 1)) / 6;
       
        // summation of first n natural nos.
        let sumNatural = (n * (n + 1) / 2);
       
        // return result
        return (sumSquare + sumNatural + 1);
    }
  
// Driver code
 
        let n = 8;
        document.write(seriesFunc(n) + "<br/>");
           
        n = 13;
        document.write(seriesFunc(13));
 
</script>


Output : 

241
911

Time Complexity: O(1) since constant operations are performed

Auxiliary Space: O(1)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments