Sunday, January 12, 2025
Google search engine
HomeData Modelling & AIfind N largest elements from a Linked list

find N largest elements from a Linked list

Given a Linked list of integers, the task is to find N largest elements in the Linked List.

Examples:

Input: [4, 5, 1, 2, 9], N = 2
Output: [9, 5]

Input: [81, 52, 45, 10, 3, 2, 96], N = 3
Output: [ 96, 81, 52]

Method 1 : Brute Force

Approach: To solve the problem follow the below idea:

The idea is to Sort the Linked list using any sorting method and then traverse the list up to N

Follow the steps to solve the problem:

  • Sort the given list using bubble sort.
  • Traverse the list up to N values
  • Print the values.

Below is the implementation for the above approach:

C++




// C++ program to sort Linked List
// using Bubble Sort by swapping nodes
 
#include <bits/stdc++.h>
using namespace std;
 
// Structure for a node
struct Node {
    int data;
    struct Node* next;
} Node;
 
// Function to swap the nodes
struct Node* swap(struct Node* ptr1, struct Node* ptr2)
{
    struct Node* tmp = ptr2->next;
    ptr2->next = ptr1;
    ptr1->next = tmp;
    return ptr2;
}
 
// Function to sort the list
int bubbleSort(struct Node** head, int count)
{
    struct Node** h;
    int i, j, swapped;
 
    for (i = 0; i <= count; i++) {
 
        h = head;
        swapped = 0;
 
        for (j = 0; j < count - i - 1; j++) {
 
            struct Node* p1 = *h;
            struct Node* p2 = p1->next;
 
            if (p1->data < p2->data) {
 
                // Update the link after swapping
                *h = swap(p1, p2);
                swapped = 1;
            }
 
            h = &(*h)->next;
        }
 
        // Break if the loop ended without
        // any swap
        if (swapped == 0)
            break;
    }
}
 
// Function to print the list
void printNLargestInList(struct Node* n, int N)
{
    for (int i = 0; i <= N - 1 && n != NULL; i++) {
        cout << n->data << " ";
        n = n->next;
    }
    cout << endl;
}
 
// Function to insert a struct Node
// at the beginning of a linked list
void insertAtTheBegin(struct Node** start_ref, int data)
{
    struct Node* ptr1
        = (struct Node*)malloc(sizeof(struct Node));
 
    ptr1->data = data;
    ptr1->next = *start_ref;
    *start_ref = ptr1;
}
 
// Driver Code
int main()
{
    int arr[] = { 4, 5, 1, 2, 9 }, N = 2;
    int list_size, i;
 
    // Start with empty linked list */
    struct Node* start = NULL;
    list_size = sizeof(arr) / sizeof(arr[0]);
 
    // Create linked list from the array arr[]
    for (i = list_size - 1; i >= 0; i--)
        insertAtTheBegin(&start, arr[i]);
 
    // sort the linked list
    bubbleSort(&start, list_size);
 
    // Print largest N elements of the list
    printNLargestInList(start, N);
 
    return 0;
}


Java




public class Main {
    public static void main(String[] args) {
        // Create a new linked list
        LinkedList linkedList = new LinkedList();
         
        // Define an array of integers
        int[] arr = { 4, 5, 1, 2, 9 };
         
        // Specify the value of N for printing N largest elements
        int N = 2;
 
        // Insert elements from the array into the linked list at the beginning
        for (int num : arr) {
            linkedList.insertAtBegin(num);
        }
 
        // Print the N largest elements in the linked list
        linkedList.printNLargest(N);
    }
}
 
// Node class represents a node in the linked list
class Node {
    public int data; // Data of the node
    public Node next; // Reference to the next node in the list
 
    // Constructor to initialize a node with given data
    public Node(int data) {
        this.data = data;
        this.next = null;
    }
}
 
// LinkedList class represents a linked list
class LinkedList {
    private Node head; // Reference to the first node in the list
 
    // Constructor to initialize an empty linked list
    public LinkedList() {
        head = null;
    }
 
    // Function to insert a Node at the beginning of the linked list
    public void insertAtBegin(int data) {
        // Create a new node with the given data
        Node newNode = new Node(data);
         
        // Set the next of the new node to the current head
        newNode.next = head;
         
        // Update the head to be the new node
        head = newNode;
    }
 
    // Function to print the N largest elements in the linked list
    public void printNLargest(int N) {
        // Sort the linked list in descending order using Bubble Sort
        bubbleSort();
         
        // Initialize a pointer to the head of the list
        Node current = head;
 
        // Print the first N elements in the list
        for (int i = 0; i < N && current != null; i++) {
            System.out.print(current.data + " ");
            current = current.next;
        }
        System.out.println();
    }
 
    // Function to sort the linked list using Bubble Sort
    private void bubbleSort() {
        // Check if the list is empty or has only one element
        if (head == null || head.next == null)
            return;
 
        boolean swapped;
        // Perform Bubble Sort
        do {
            Node prev = null;
            Node current = head;
            swapped = false;
 
            while (current.next != null) {
                // Compare adjacent nodes and swap if needed
                if (current.data < current.next.data) {
                    Node temp = current.next;
                    current.next = temp.next;
                    temp.next = current;
 
                    if (prev == null)
                        head = temp;
                    else
                        prev.next = temp;
 
                    prev = temp;
                    swapped = true;
                } else {
                    prev = current;
                    current = current.next;
                }
            }
        } while (swapped);
    }
}


Python3




# Structure for a node
class Node:
    def __init__(self, data):
        self.data = data
        self.next = None
 
# Function to swap the nodes
def swap(ptr1, ptr2):
    tmp = ptr2.next
    ptr2.next = ptr1
    ptr1.next = tmp
    return ptr2
 
# Function to sort the list in ascending order (smallest to largest)
def bubbleSort(head, count):
    h = None
    i, j, swapped = 0, 0, 0
 
    for i in range(count + 1):
        h = head
        swapped = 0
 
        for j in range(count - i - 1):
            p1 = h
            p2 = p1.next
 
            # Check if p2 is None (end of the list)
            if p2 is None:
                break
 
            if p1.data > p2.data:  # Modified to sort in ascending order
                # Update the link after swapping
                h = swap(p1, p2)
                swapped = 1
 
            h = h.next
 
        # Break if the loop ended without any swap
        if swapped == 0:
            break
 
# Function to print the list
def printNLargestInList(n, N):
    result = []
    while n is not None:
        result.append(n.data)
        n = n.next
 
    # Sort the result list in ascending order
    result.sort()
 
    # Print the largest N elements of the list
    for i in range(-1, -N - 1, -1):
        if i >= -len(result):
            print(result[i], end=" ")
    print()
 
# Function to insert a Node
# at the beginning of a linked list
def insertAtTheBegin(start_ref, data):
    ptr1 = Node(data)
    ptr1.next = start_ref[0]
    start_ref[0] = ptr1
 
# Driver Code
if __name__ == "__main__":
    arr = [4, 5, 1, 2, 9]
    N = 2
    list_size = len(arr)
 
    # Start with an empty linked list
    start = [None]
 
    # Create linked list from the array arr[]
    for i in range(list_size - 1, -1, -1):
        insertAtTheBegin(start, arr[i])
 
    # Sort the linked list in ascending order (smallest to largest)
    bubbleSort(start[0], list_size)
 
    # Print largest N elements of the list in ascending order
    printNLargestInList(start[0], N)


C#




using System;
 
class Node
{
    public int data;
    public Node next;
 
    public Node(int data)
    {
        this.data = data;
        this.next = null;
    }
}
 
class LinkedList
{
    private Node head;
 
    public LinkedList()
    {
        head = null;
    }
 
    // Function to insert a Node at the beginning of the linked list
    public void InsertAtBegin(int data)
    {
        Node newNode = new Node(data);
        newNode.next = head;
        head = newNode;
    }
 
    // Function to print the N largest elements in the linked list
    public void PrintNLargest(int N)
    {
        BubbleSort();
        Node current = head;
 
        for (int i = 0; i < N && current != null; i++)
        {
            Console.Write(current.data + " ");
            current = current.next;
        }
        Console.WriteLine();
    }
 
    // Function to sort the linked list using Bubble Sort
    private void BubbleSort()
    {
        if (head == null || head.next == null)
            return;
 
        bool swapped;
        do
        {
            Node prev = null;
            Node current = head;
            swapped = false;
 
            while (current.next != null)
            {
                if (current.data < current.next.data)
                {
                    Node temp = current.next;
                    current.next = temp.next;
                    temp.next = current;
 
                    if (prev == null)
                        head = temp;
                    else
                        prev.next = temp;
 
                    prev = temp;
                    swapped = true;
                }
                else
                {
                    prev = current;
                    current = current.next;
                }
            }
        } while (swapped);
    }
}
 
class Program
{
    static void Main(string[] args)
    {
        LinkedList linkedList = new LinkedList();
        int[] arr = { 4, 5, 1, 2, 9 };
        int N = 2;
 
        foreach (int num in arr)
        {
            linkedList.InsertAtBegin(num);
        }
       
        linkedList.PrintNLargest(N);
    }
}


Javascript




// Structure for a node
class Node {
    constructor(data) {
        this.data = data;
        this.next = null;
    }
}
 
// Function to swap the nodes
function swap(ptr1, ptr2) {
    let tmp = ptr2.next;
    ptr2.next = ptr1;
    ptr1.next = tmp;
    return ptr2;
}
 
// Function to sort the list in ascending order (smallest to largest)
function bubbleSort(head, count) {
    let h = null;
    let i, j, swapped;
 
    for (i = 0; i <= count; i++) {
        h = head;
        swapped = 0;
 
        for (j = 0; j < count - i - 1; j++) {
            let p1 = h;
            let p2 = p1.next;
 
            // Check if p2 is null (end of the list)
            if (p2 === null) {
                break;
            }
 
            if (p1.data > p2.data) {  // Modified to sort in ascending order
                // Update the link after swapping
                h = swap(p1, p2);
                swapped = 1;
            }
 
            h = h.next;
        }
 
        // Break if the loop ended without any swap
        if (swapped === 0) {
            break;
        }
    }
}
 
// Function to print the list
function printNLargestInList(n, N) {
    let result = [];
    while (n !== null) {
        result.push(n.data);
        n = n.next;
    }
 
    // Sort the result array in ascending order
    result.sort((a, b) => a - b);
 
    // Print the largest N elements of the list
    for (let i = result.length - 1; i >= Math.max(result.length - N, 0); i--) {
        console.log(result[i]);
    }
}
 
// Function to insert a Node at the beginning of a linked list
function insertAtTheBegin(start_ref, data) {
    let ptr1 = new Node(data);
    ptr1.next = start_ref[0];
    start_ref[0] = ptr1;
}
 
// Driver Code
let arr = [4, 5, 1, 2, 9];
let N = 2;
let list_size = arr.length;
 
// Start with an empty linked list
let start = [null];
 
// Create linked list from the array arr[]
for (let i = list_size - 1; i >= 0; i--) {
    insertAtTheBegin(start, arr[i]);
}
 
// Sort the linked list in ascending order (smallest to largest)
bubbleSort(start[0], list_size);
 
// Print largest N elements of the list in ascending order
printNLargestInList(start[0], N);


Output

9 5 











Time complexity: O(N2)
Auxiliary space: O(1)

Method 2: Max Heap

Intuition

Store the elements of the linked list in a priority queue (max heap). Pop out the elements from the heap till N becomes 0 and add it to an array. Return the array as our answer.

Algorithm

  1. Create a max heap (priority queue) to store the elements of the linked list.
  2. Iterate through the linked list from head to end.
  3. For each element, insert the data into the heap.
  4. Initialize an empty vector to store our answer.
  5. Pop out N elements from the max-heap and add it to the vector or array.
  6. Return the array and print the answer.

Code

C++




// C++ code for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Define a linked list node structure
class Node {
public:
    int data;
    Node* next;
    Node(int data)
    {
        this->data = data;
        this->next = NULL;
    }
};
 
// Function to find N largest elements
vector<int> findNLargestElements(Node* head, int N)
{
    // Create a max-heap
    priority_queue<int, vector<int> > pq;
 
    // Traverse the linked list and insert elements into the
    // maxHeap
    while (head != NULL) {
        pq.push(head->data);
        head = head->next;
    }
 
    // Pop N largest elements from the maxHeap
    vector<int> result;
    for (int i = 0; i < N; i++) {
        if (!pq.empty()) {
            result.push_back(pq.top());
            pq.pop();
        }
    }
 
    return result;
}
 
// Function to print a vector
void print(vector<int>& v)
{
    for (int num : v) {
        cout << num << " ";
    }
    cout << endl;
}
 
// Define a function to insert a node at the beginning of
// the linked list
void insertAtTheBegin(Node** head, int data)
{
    Node* newNode = new Node(data);
    newNode->next = *head;
    *head = newNode;
}
 
int main()
{
    int arr[] = { 81, 52, 45, 10, 3, 2, 96 };
    int N = 3;
    int list_size = sizeof(arr) / sizeof(arr[0]);
 
    // Start with an empty linked list
    Node* start = nullptr;
 
    // Create a linked list from the array
    for (int i = list_size - 1; i >= 0; i--) {
        insertAtTheBegin(&start, arr[i]);
    }
 
    vector<int> result = findNLargestElements(start, N);
    cout << "Output: ";
    print(result);
 
    return 0;
}
 
// This code is contributed by Abhinav Mahajan (abhinav_m22)


Java




import java.util.PriorityQueue;
import java.util.Vector;
 
// Define a linked list node structure
class Node {
    public int data;
    public Node next;
 
    public Node(int data) {
        this.data = data;
        this.next = null;
    }
}
 
public class Main {
    // Function to find N largest elements
    static Vector<Integer> findNLargestElements(Node head, int N) {
        // Create a max-heap
        PriorityQueue<Integer> pq = new PriorityQueue<>((a, b) -> b - a);
 
        // Traverse the linked list and insert elements into the maxHeap
        while (head != null) {
            pq.add(head.data);
            head = head.next;
        }
 
        // Pop N largest elements from the maxHeap
        Vector<Integer> result = new Vector<>();
        for (int i = 0; i < N; i++) {
            if (!pq.isEmpty()) {
                result.add(pq.poll());
            }
        }
 
        return result;
    }
 
    // Function to print a vector
    static void print(Vector<Integer> v) {
        for (int num : v) {
            System.out.print(num + " ");
        }
        System.out.println();
    }
 
    // Function to insert a node at the beginning of the linked list
    static Node insertAtTheBegin(Node head, int data) {
        Node newNode = new Node(data);
        newNode.next = head;
        return newNode;
    }
 
    public static void main(String[] args) {
        int[] arr = { 81, 52, 45, 10, 3, 2, 96 };
        int N = 3;
        int list_size = arr.length;
 
        // Start with an empty linked list
        Node start = null;
 
        // Create a linked list from the array
        for (int i = list_size - 1; i >= 0; i--) {
            start = insertAtTheBegin(start, arr[i]);
        }
 
        Vector<Integer> result = findNLargestElements(start, N);
        System.out.print("Output: ");
        print(result);
    }
}


Python3




import heapq
 
# Define a linked list node class
class Node:
    def __init__(self, data):
        self.data = data
        self.next = None
 
# Function to find N largest elements
def find_n_largest_elements(head, N):
    # Create a max heap
    max_heap = []
 
    # Traverse the linked list and insert elements into the max heap
    while head:
        heapq.heappush(max_heap, -head.data)
        head = head.next
 
    # Pop N largest elements from the max heap
    result = []
    for i in range(N):
        if max_heap:
            result.append(-heapq.heappop(max_heap))
 
    return result
 
# Function to print a list
def print_list(lst):
    print(" ".join(map(str, lst)))
 
# Function to insert a node at the beginning of the linked list
def insert_at_the_begin(head, data):
    new_node = Node(data)
    new_node.next = head
    return new_node
 
if __name__ == "__main__":
    arr = [81, 52, 45, 10, 3, 2, 96]
    N = 3
 
    # Start with an empty linked list
    start = None
 
    # Create a linked list from the array
    for i in range(len(arr) - 1, -1, -1):
        start = insert_at_the_begin(start, arr[i])
 
    result = find_n_largest_elements(start, N)
    print("Output:", end=" ")
    print_list(result)


C#




using System;
using System.Collections.Generic;
 
// Define a linked list node structure
public class Node
{
    public int data;
    public Node next;
 
    public Node(int data)
    {
        this.data = data;
        this.next = null;
    }
}
 
public class Program
{
    // Function to find N largest elements
    public static List<int> FindNLargestElements(Node head, int N)
    {
        // Create a max-heap by implementing a min-heap with reversed ordering
        var pq = new PriorityQueue<int>((x, y) => y.CompareTo(x));
 
        // Traverse the linked list and insert elements into the maxHeap
        while (head != null)
        {
            pq.Enqueue(head.data);
            head = head.next;
        }
 
        // Pop N largest elements from the maxHeap
        var result = new List<int>();
        for (int i = 0; i < N; i++)
        {
            if (pq.Count > 0)
            {
                result.Add(pq.Dequeue());
            }
        }
 
        return result;
    }
 
    // Function to print a list
    public static void Print(List<int> list)
    {
        foreach (var num in list)
        {
            Console.Write(num + " ");
        }
        Console.WriteLine();
    }
 
    // Define a function to insert a node at the beginning of the linked list
    public static void InsertAtTheBegin(ref Node head, int data)
    {
        var newNode = new Node(data);
        newNode.next = head;
        head = newNode;
    }
 
    public static void Main()
    {
        int[] arr = { 81, 52, 45, 10, 3, 2, 96 };
        int N = 3;
 
        Node start = null;
 
        // Create a linked list from the array
        for (int i = arr.Length - 1; i >= 0; i--)
        {
            InsertAtTheBegin(ref start, arr[i]);
        }
 
        var result = FindNLargestElements(start, N);
        Console.Write("Output: ");
        Print(result);
    }
}
 
// Implement a priority queue for the C# code
public class PriorityQueue<T> where T : IComparable<T>
{
    private List<T> data;
    private Comparison<T> comparison;
 
    public PriorityQueue(Comparison<T> comparison)
    {
        this.data = new List<T>();
        this.comparison = comparison;
    }
 
    public void Enqueue(T item)
    {
        data.Add(item);
        int childIndex = data.Count - 1;
        while (childIndex > 0)
        {
            int parentIndex = (childIndex - 1) / 2;
            if (comparison(data[childIndex], data[parentIndex]) >= 0)
                break;
            T tmp = data[childIndex];
            data[childIndex] = data[parentIndex];
            data[parentIndex] = tmp;
            childIndex = parentIndex;
        }
    }
 
    public T Dequeue()
    {
        int lastIndex = data.Count - 1;
        T frontItem = data[0];
        data[0] = data[lastIndex];
        data.RemoveAt(lastIndex--);
 
        int parentIndex = 0;
        while (true)
        {
            int leftChildIndex = parentIndex * 2 + 1;
            if (leftChildIndex > lastIndex)
                break;
            int rightChildIndex = leftChildIndex + 1;
            if (rightChildIndex <= lastIndex && comparison(data[rightChildIndex], data[leftChildIndex]) < 0)
                leftChildIndex = rightChildIndex;
            if (comparison(data[parentIndex], data[leftChildIndex]) <= 0)
                break;
            T tmp = data[parentIndex];
            data[parentIndex] = data[leftChildIndex];
            data[leftChildIndex] = tmp;
            parentIndex = leftChildIndex;
        }
        return frontItem;
    }
 
    public int Count
    {
        get { return data.Count; }
    }
}
 
 
// This code is contributed by shivamgupta310570


Output

Output: 96 81 52 








Time Complexity: O(N*logN). To insert elements into the max-heap, it takes logN time. We insert N elements from the linked list to the heap, hence the overall time complexity is O(N*logN).

Space Complexity: O(N). We create a max-heap data structure due to which it requires O(N) space.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
09 Jan, 2024
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments