Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIFind N in the given matrix that follows a pattern

Find N in the given matrix that follows a pattern

Given an infinite matrix filled with the natural numbers as shown below: 
 

1 2 4 7 . . .
3 5 8 . . . .
6 9 . . . . .
10  . . . . .
. . . . . . .

Also, given an integer N and the task is to find the row and the column of the integer N in the given matrix.
Examples: 
 

Input: N = 5
Output: 2 2
5 is present in the 2nd row 
and the 2nd column.

Input: N = 3
Output: 2 1

 

Approach: On observing the problem carefully, the row number can be obtained by subtracting first x natural numbers from N such that they satisfy the condition N – (x * (x + 1)) / 2 ? 1 and the resultant value will be the required row number. 
To get the corresponding column, add first x natural numbers to 1 such that they satisfy the condition 1 + (y * (y + 1)) / 2 ? A. Subtract this resultant value from N to get the gap between the base and the given value and again subtract the gap from y + 1.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the row and
// the column of the given integer
pair<int, int> solve(int n)
{
 
    int low = 1, high = 1e4, x = n, p = 0;
 
    // Binary search for the row number
    while (low <= high) {
        int mid = (low + high) / 2;
        int sum = (mid * (mid + 1)) / 2;
 
        // Condition to get the maximum
        // x that satisfies the criteria
        if (x - sum >= 1) {
            p = mid;
            low = mid + 1;
        }
        else {
            high = mid - 1;
        }
    }
 
    int start = 1, end = 1e4, y = 1, q = 0;
 
    // Binary search for the column number
    while (start <= end) {
        int mid = (start + end) / 2;
        int sum = (mid * (mid + 1)) / 2;
 
        // Condition to get the maximum
        // y that satisfies the criteria
        if (y + sum <= n) {
            q = mid;
            start = mid + 1;
        }
        else {
            end = mid - 1;
        }
    }
 
    // Get the row and the column number
    x = x - (p * (p + 1)) / 2;
    y = y + (q * (q + 1)) / 2;
    int r = x;
    int c = q + 1 - n + y;
 
    // Return the pair
    pair<int, int> ans = { r, c };
    return ans;
}
 
// Driver code
int main()
{
    int n = 5;
 
    pair<int, int> p = solve(n);
    cout << p.first << " " << p.second;
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
     
    // Function to return the row and
    // the column of the given integer
    static int[] solve(int n)
    {
        int low = 1, high = (int)1e4, x = n, p = 0;
     
        // Binary search for the row number
        while (low <= high)
        {
            int mid = (low + high) / 2;
            int sum = (mid * (mid + 1)) / 2;
     
            // Condition to get the maximum
            // x that satisfies the criteria
            if (x - sum >= 1)
            {
                p = mid;
                low = mid + 1;
            }
            else
            {
                high = mid - 1;
            }
        }
     
        int start = 1, end = (int)1e4, y = 1, q = 0;
     
        // Binary search for the column number
        while (start <= end)
        {
            int mid = (start + end) / 2;
            int sum = (mid * (mid + 1)) / 2;
     
            // Condition to get the maximum
            // y that satisfies the criteria
            if (y + sum <= n)
            {
                q = mid;
                start = mid + 1;
            }
            else
            {
                end = mid - 1;
            }
        }
     
        // Get the row and the column number
        x = x - (p * (p + 1)) / 2;
        y = y + (q * (q + 1)) / 2;
        int r = x;
        int c = q + 1 - n + y;
     
        // Return the pair
        int ans[] = { r, c };
        return ans;
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int n = 5;
     
        int []p = solve(n);
        System.out.println(p[0] + " " + p[1]);
 
    }
}
 
// This code is contributed by AnkitRai01


Python3




# Python3 implementation of the approach
 
# Function to return the row and
# the column of the given integer
def solve(n):
 
    low = 1
    high = 10**4
    x, p = n, 0
 
    # Binary search for the row number
    while (low <= high):
        mid = (low + high) // 2
        sum = (mid * (mid + 1)) // 2
 
        # Condition to get the maximum
        # x that satisfies the criteria
        if (x - sum >= 1):
            p = mid
            low = mid + 1
        else :
            high = mid - 1
 
    start, end, y, q = 1, 10**4, 1, 0
 
    # Binary search for the column number
    while (start <= end):
        mid = (start + end) // 2
        sum = (mid * (mid + 1)) // 2
 
        # Condition to get the maximum
        # y that satisfies the criteria
        if (y + sum <= n):
            q = mid
            start = mid + 1
        else:
            end = mid - 1
 
    # Get the row and the column number
    x = x - (p * (p + 1)) // 2
    y = y + (q * (q + 1)) // 2
    r = x
    c = q + 1 - n + y
 
    # Return the pair
    return r, c
 
# Driver code
n = 5
 
r, c = solve(n)
print(r, c)
 
# This code is contributed by Mohit Kumar


C#




// C# implementation of the approach
using System;
 
class GFG
{
     
    // Function to return the row and
    // the column of the given integer
    static int[] solve(int n)
    {
        int low = 1, high = (int)1e4, x = n, p = 0;
     
        // Binary search for the row number
        while (low <= high)
        {
            int mid = (low + high) / 2;
            int sum = (mid * (mid + 1)) / 2;
     
            // Condition to get the maximum
            // x that satisfies the criteria
            if (x - sum >= 1)
            {
                p = mid;
                low = mid + 1;
            }
            else
            {
                high = mid - 1;
            }
        }
     
        int start = 1, end = (int)1e4, y = 1, q = 0;
     
        // Binary search for the column number
        while (start <= end)
        {
            int mid = (start + end) / 2;
            int sum = (mid * (mid + 1)) / 2;
     
            // Condition to get the maximum
            // y that satisfies the criteria
            if (y + sum <= n)
            {
                q = mid;
                start = mid + 1;
            }
            else
            {
                end = mid - 1;
            }
        }
     
        // Get the row and the column number
        x = x - (p * (p + 1)) / 2;
        y = y + (q * (q + 1)) / 2;
        int r = x;
        int c = q + 1 - n + y;
     
        // Return the pair
        int []ans = {r, c};
        return ans;
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int n = 5;
     
        int []p = solve(n);
        Console.WriteLine(p[0] + " " + p[1]);
    }
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
// Javascript implementation of the approach
 
// Function to return the row and
    // the column of the given integer
function solve(n)
{
    let low = 1, high = 1e4, x = n, p = 0;
       
        // Binary search for the row number
        while (low <= high)
        {
            let mid = Math.floor((low + high) / 2);
            let sum = Math.floor((mid * (mid + 1)) / 2);
       
            // Condition to get the maximum
            // x that satisfies the criteria
            if (x - sum >= 1)
            {
                p = mid;
                low = mid + 1;
            }
            else
            {
                high = mid - 1;
            }
        }
       
        let start = 1, end = 1e4, y = 1, q = 0;
       
        // Binary search for the column number
        while (start <= end)
        {
            let mid = Math.floor((start + end) / 2);
            let sum = Math.floor((mid * (mid + 1)) / 2);
       
            // Condition to get the maximum
            // y that satisfies the criteria
            if (y + sum <= n)
            {
                q = mid;
                start = mid + 1;
            }
            else
            {
                end = mid - 1;
            }
        }
       
        // Get the row and the column number
        x = x - Math.floor((p * (p + 1)) / 2);
        y = y + Math.floor((q * (q + 1)) / 2);
        let r = x;
        let c = q + 1 - n + y;
       
        // Return the pair
        let ans = [ r, c ];
        return ans;
}
 
// Driver code
let n = 5;
let p = solve(n);
document.write(p[0] + " " + p[1]);
     
 
// This code is contributed by patel2127
</script>


Output: 

2 2

 

Time Complexity: O(log(N))

Auxiliary Space: O(1)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments