Saturday, December 28, 2024
Google search engine
HomeData Modelling & AIFind minimum s-t cut in a flow network

Find minimum s-t cut in a flow network

In a flow network, an s-t cut is a cut that requires the source ‘s’ and the sink ‘t’ to be in different subsets, and it consists of edges going from the source’s side to the sink’s side. The capacity of an s-t cut is defined by the sum of the capacity of each edge in the cut-set. (Source: Wiki) The problem discussed here is to find the minimum capacity s-t cut of the given network. The expected output is all edges of the minimum cut. For example, in the following flow network, example s-t cuts are {{0,1}, {0, 2}}, {{0, 2}, {1, 2}, {1, 3}}, etc. The minimum s-t cut is {{1, 3}, {4, 3}, {4 5}} which has capacity as 12+7+4 = 23.

We strongly recommend reading the below post first. Ford-Fulkerson Algorithm for Maximum Flow Problem

Minimum Cut and Maximum Flow:

Like Maximum Bipartite Matching, this is another problem that can be solved using Ford-Fulkerson Algorithm. This is based on the max-flow min-cut theorem. 

The max-flow min-cut theorem states that in a flow network, the amount of maximum flow is equal to the capacity of the minimum cut. 

From Ford-Fulkerson, we get a capacity of minimum cut. How to print all edges that form the minimum cut? The idea is to use a residual graph

Following are steps to print all edges of the minimum cut.

  1. Run the Ford-Fulkerson algorithm and consider the final residual graph
  2. Find the set of vertices that are reachable from the source in the residual graph. 
  3. All edges which are from a reachable vertex to a non-reachable vertex are minimum cut edges. Print all such edges. 

Following is the implementation of the above approach. 

C++




// C++ program for finding minimum cut using Ford-Fulkerson
#include <iostream>
#include <limits.h>
#include <string.h>
#include <queue>
using namespace std;
 
// Number of vertices in given graph
#define V 6
 
/* Returns true if there is a path from source 's' to sink 't' in
  residual graph. Also fills parent[] to store the path */
int bfs(int rGraph[V][V], int s, int t, int parent[])
{
    // Create a visited array and mark all vertices as not visited
    bool visited[V];
    memset(visited, 0, sizeof(visited));
 
    // Create a queue, enqueue source vertex and mark source vertex
    // as visited
    queue <int> q;
    q.push(s);
    visited[s] = true;
    parent[s] = -1;
 
    // Standard BFS Loop
    while (!q.empty())
    {
        int u = q.front();
        q.pop();
 
        for (int v=0; v<V; v++)
        {
            if (visited[v]==false && rGraph[u][v] > 0)
            {
                q.push(v);
                parent[v] = u;
                visited[v] = true;
            }
        }
    }
 
    // If we reached sink in BFS starting from source, then return
    // true, else false
    return (visited[t] == true);
}
 
// A DFS based function to find all reachable vertices from s.  The function
// marks visited[i] as true if i is reachable from s.  The initial values in
// visited[] must be false. We can also use BFS to find reachable vertices
void dfs(int rGraph[V][V], int s, bool visited[])
{
    visited[s] = true;
    for (int i = 0; i < V; i++)
       if (rGraph[s][i] && !visited[i])
           dfs(rGraph, i, visited);
}
 
// Prints the minimum s-t cut
void minCut(int graph[V][V], int s, int t)
{
    int u, v;
 
    // Create a residual graph and fill the residual graph with
    // given capacities in the original graph as residual capacities
    // in residual graph
    int rGraph[V][V]; // rGraph[i][j] indicates residual capacity of edge i-j
    for (u = 0; u < V; u++)
        for (v = 0; v < V; v++)
             rGraph[u][v] = graph[u][v];
 
    int parent[V];  // This array is filled by BFS and to store path
 
    // Augment the flow while there is a path from source to sink
    while (bfs(rGraph, s, t, parent))
    {
        // Find minimum residual capacity of the edges along the
        // path filled by BFS. Or we can say find the maximum flow
        // through the path found.
        int path_flow = INT_MAX;
        for (v=t; v!=s; v=parent[v])
        {
            u = parent[v];
            path_flow = min(path_flow, rGraph[u][v]);
        }
 
        // update residual capacities of the edges and reverse edges
        // along the path
        for (v=t; v != s; v=parent[v])
        {
            u = parent[v];
            rGraph[u][v] -= path_flow;
            rGraph[v][u] += path_flow;
        }
    }
 
    // Flow is maximum now, find vertices reachable from s
    bool visited[V];
    memset(visited, false, sizeof(visited));
    dfs(rGraph, s, visited);
 
    // Print all edges that are from a reachable vertex to
    // non-reachable vertex in the original graph
    for (int i = 0; i < V; i++)
      for (int j = 0; j < V; j++)
         if (visited[i] && !visited[j] && graph[i][j])
              cout << i << " - " << j << endl;
 
    return;
}
 
// Driver program to test above functions
int main()
{
    // Let us create a graph shown in the above example
    int graph[V][V] = { {0, 16, 13, 0, 0, 0},
                        {0, 0, 10, 12, 0, 0},
                        {0, 4, 0, 0, 14, 0},
                        {0, 0, 9, 0, 0, 20},
                        {0, 0, 0, 7, 0, 4},
                        {0, 0, 0, 0, 0, 0}
                      };
 
    minCut(graph, 0, 5);
 
    return 0;
}


Java




// Java program for finding min-cut in the given graph
import java.util.LinkedList;
import java.util.Queue;
 
public class Graph {
         
    // Returns true if there is a path
    // from source 's' to sink 't' in residual
    // graph. Also fills parent[] to store the path
    private static boolean bfs(int[][] rGraph, int s,
                                int t, int[] parent) {
         
        // Create a visited array and mark
        // all vertices as not visited    
        boolean[] visited = new boolean[rGraph.length];
         
        // Create a queue, enqueue source vertex
        // and mark source vertex as visited    
        Queue<Integer> q = new LinkedList<Integer>();
        q.add(s);
        visited[s] = true;
        parent[s] = -1;
         
        // Standard BFS Loop    
        while (!q.isEmpty()) {
            int v = q.poll();
            for (int i = 0; i < rGraph.length; i++) {
                if (rGraph[v][i] > 0 && !visited[i]) {
                    q.offer(i);
                    visited[i] = true;
                    parent[i] = v;
                }
            }
        }
         
        // If we reached sink in BFS starting
        // from source, then return true, else false    
        return (visited[t] == true);
    }
     
    // A DFS based function to find all reachable
    // vertices from s. The function marks visited[i]
    // as true if i is reachable from s. The initial
    // values in visited[] must be false. We can also
    // use BFS to find reachable vertices
    private static void dfs(int[][] rGraph, int s,
                                boolean[] visited) {
        visited[s] = true;
        for (int i = 0; i < rGraph.length; i++) {
                if (rGraph[s][i] > 0 && !visited[i]) {
                    dfs(rGraph, i, visited);
                }
        }
    }
 
    // Prints the minimum s-t cut
    private static void minCut(int[][] graph, int s, int t) {
        int u,v;
         
        // Create a residual graph and fill the residual
        // graph with given capacities in the original
        // graph as residual capacities in residual graph
        // rGraph[i][j] indicates residual capacity of edge i-j
        int[][] rGraph = new int[graph.length][graph.length];
        for (int i = 0; i < graph.length; i++) {
            for (int j = 0; j < graph.length; j++) {
                rGraph[i][j] = graph[i][j];
            }
        }
 
        // This array is filled by BFS and to store path
        int[] parent = new int[graph.length];
         
        // Augment the flow while there is path from source to sink    
        while (bfs(rGraph, s, t, parent)) {
             
            // Find minimum residual capacity of the edges
            // along the path filled by BFS. Or we can say
            // find the maximum flow through the path found.
            int pathFlow = Integer.MAX_VALUE;        
            for (v = t; v != s; v = parent[v]) {
                u = parent[v];
                pathFlow = Math.min(pathFlow, rGraph[u][v]);
            }
             
            // update residual capacities of the edges and
            // reverse edges along the path
            for (v = t; v != s; v = parent[v]) {
                u = parent[v];
                rGraph[u][v] = rGraph[u][v] - pathFlow;
                rGraph[v][u] = rGraph[v][u] + pathFlow;
            }
        }
         
        // Flow is maximum now, find vertices reachable from s    
        boolean[] isVisited = new boolean[graph.length];    
        dfs(rGraph, s, isVisited);
         
        // Print all edges that are from a reachable vertex to
        // non-reachable vertex in the original graph    
        for (int i = 0; i < graph.length; i++) {
            for (int j = 0; j < graph.length; j++) {
                if (graph[i][j] > 0 && isVisited[i] && !isVisited[j]) {
                    System.out.println(i + " - " + j);
                }
            }
        }
    }
 
    //Driver Program
    public static void main(String args[]) {
         
        // Let us create a graph shown in the above example
        int graph[][] = { {0, 16, 13, 0, 0, 0},
                {0, 0, 10, 12, 0, 0},
                {0, 4, 0, 0, 14, 0},
                {0, 0, 9, 0, 0, 20},
                {0, 0, 0, 7, 0, 4},
                {0, 0, 0, 0, 0, 0}
            };
        minCut(graph, 0, 5);
    }
}
// This code is contributed by Himanshu Shekhar


Python




# Python program for finding min-cut in the given graph
# Complexity : (E*(V^3))
# Total augmenting path = VE and BFS
# with adj matrix takes :V^2 times
 
from collections import defaultdict
 
# This class represents a directed graph
# using adjacency matrix representation
class Graph:
 
    def __init__(self,graph):
        self.graph = graph # residual graph
        self.org_graph = [i[:] for i in graph]
        self. ROW = len(graph)
        self.COL = len(graph[0])
 
 
    '''Returns true if there is a path from
    source 's' to sink 't' in
    residual graph. Also fills
    parent[] to store the path '''
    def BFS(self,s, t, parent):
 
        # Mark all the vertices as not visited
        visited =[False]*(self.ROW)
 
        # Create a queue for BFS
        queue=[]
 
        # Mark the source node as visited and enqueue it
        queue.append(s)
        visited[s] = True
 
        # Standard BFS Loop
        while queue:
 
            #Dequeue a vertex from queue and print it
            u = queue.pop(0)
 
            # Get all adjacent vertices of
            # the dequeued vertex u
            # If a adjacent has not been
            # visited, then mark it
            # visited and enqueue it
            for ind, val in enumerate(self.graph[u]):
                if visited[ind] == False and val > 0 :
                    queue.append(ind)
                    visited[ind] = True
                    parent[ind] = u
 
        # If we reached sink in BFS starting
        # from source, then return
        # true, else false
        return True if visited[t] else False
         
    # Function for Depth first search
    # Traversal of the graph
    def dfs(self, graph,s,visited):
        visited[s]=True
        for i in range(len(graph)):
            if graph[s][i]>0 and not visited[i]:
                self.dfs(graph,i,visited)
 
    # Returns the min-cut of the given graph
    def minCut(self, source, sink):
 
        # This array is filled by BFS and to store path
        parent = [-1]*(self.ROW)
 
        max_flow = 0 # There is no flow initially
 
        # Augment the flow while there is path from source to sink
        while self.BFS(source, sink, parent) :
 
            # Find minimum residual capacity of the edges along the
            # path filled by BFS. Or we can say find the maximum flow
            # through the path found.
            path_flow = float("Inf")
            s = sink
            while(s != source):
                path_flow = min (path_flow, self.graph[parent[s]][s])
                s = parent[s]
 
            # Add path flow to overall flow
            max_flow += path_flow
 
            # update residual capacities of the edges and reverse edges
            # along the path
            v = sink
            while(v != source):
                u = parent[v]
                self.graph[u][v] -= path_flow
                self.graph[v][u] += path_flow
                v = parent[v]
 
        visited=len(self.graph)*[False]
        self.dfs(self.graph,s,visited)
 
        # print the edges which initially had weights
        # but now have 0 weight
        for i in range(self.ROW):
            for j in range(self.COL):
                if self.graph[i][j] == 0 and\
                self.org_graph[i][j] > 0 and visited[i]:
                    print str(i) + " - " + str(j)
 
 
# Create a graph given in the above diagram
graph = [[0, 16, 13, 0, 0, 0],
        [0, 0, 10, 12, 0, 0],
        [0, 4, 0, 0, 14, 0],
        [0, 0, 9, 0, 0, 20],
        [0, 0, 0, 7, 0, 4],
        [0, 0, 0, 0, 0, 0]]
 
g = Graph(graph)
 
source = 0; sink = 5
 
g.minCut(source, sink)
 
# This code is contributed by Neelam Yadav


C#




// C# program for finding min-cut in the given graph
using System;
using System.Collections.Generic;
 
class Graph
{
         
    // Returns true if there is a path
    // from source 's' to sink 't' in residual
    // graph. Also fills parent[] to store the path
    private static bool bfs(int[,] rGraph, int s,
                            int t, int[] parent)
    {
         
        // Create a visited array and mark
        // all vertices as not visited    
        bool[] visited = new bool[rGraph.Length];
         
        // Create a queue, enqueue source vertex
        // and mark source vertex as visited    
        Queue<int> q = new Queue<int>();
        q.Enqueue(s);
        visited[s] = true;
        parent[s] = -1;
         
        // Standard BFS Loop    
        while (q.Count != 0)
        {
            int v = q.Dequeue();
            for (int i = 0; i < rGraph.GetLength(0); i++)
            {
                if (rGraph[v,i] > 0 && !visited[i])
                {
                    q.Enqueue(i);
                    visited[i] = true;
                    parent[i] = v;
                }
            }
        }
         
        // If we reached sink in BFS starting
        // from source, then return true, else false    
        return (visited[t] == true);
    }
     
    // A DFS based function to find all reachable
    // vertices from s. The function marks visited[i]
    // as true if i is reachable from s. The initial
    // values in visited[] must be false. We can also
    // use BFS to find reachable vertices
    private static void dfs(int[,] rGraph, int s,
                            bool[] visited)
    {
        visited[s] = true;
        for (int i = 0; i < rGraph.GetLength(0); i++)
        {
            if (rGraph[s,i] > 0 && !visited[i])
            {
                dfs(rGraph, i, visited);
            }
        }
    }
 
    // Prints the minimum s-t cut
    private static void minCut(int[,] graph, int s, int t)
    {
        int u, v;
         
        // Create a residual graph and fill the residual
        // graph with given capacities in the original
        // graph as residual capacities in residual graph
        // rGraph[i,j] indicates residual capacity of edge i-j
        int[,] rGraph = new int[graph.Length,graph.Length];
        for (int i = 0; i < graph.GetLength(0); i++)
        {
            for (int j = 0; j < graph.GetLength(1); j++)
            {
                rGraph[i, j] = graph[i, j];
            }
        }
 
        // This array is filled by BFS and to store path
        int[] parent = new int[graph.Length];
         
        // Augment the flow while there is path
        // from source to sink    
        while (bfs(rGraph, s, t, parent))
        {
             
            // Find minimum residual capacity of the edges
            // along the path filled by BFS. Or we can say
            // find the maximum flow through the path found.
            int pathFlow = int.MaxValue;        
            for (v = t; v != s; v = parent[v])
            {
                u = parent[v];
                pathFlow = Math.Min(pathFlow, rGraph[u, v]);
            }
             
            // update residual capacities of the edges and
            // reverse edges along the path
            for (v = t; v != s; v = parent[v])
            {
                u = parent[v];
                rGraph[u, v] = rGraph[u, v] - pathFlow;
                rGraph[v, u] = rGraph[v, u] + pathFlow;
            }
        }
         
        // Flow is maximum now, find vertices reachable from s    
        bool[] isVisited = new bool[graph.Length];    
        dfs(rGraph, s, isVisited);
         
        // Print all edges that are from a reachable vertex to
        // non-reachable vertex in the original graph    
        for (int i = 0; i < graph.GetLength(0); i++)
        {
            for (int j = 0; j < graph.GetLength(1); j++)
            {
                if (graph[i, j] > 0 &&
                    isVisited[i] && !isVisited[j])
                {
                    Console.WriteLine(i + " - " + j);
                }
            }
        }
    }
 
    // Driver Code
    public static void Main(String []args)
    {
         
        // Let us create a graph shown
        // in the above example
        int [,]graph = {{0, 16, 13, 0, 0, 0},
                        {0, 0, 10, 12, 0, 0},
                        {0, 4, 0, 0, 14, 0},
                        {0, 0, 9, 0, 0, 20},
                        {0, 0, 0, 7, 0, 4},
                        {0, 0, 0, 0, 0, 0}};
        minCut(graph, 0, 5);
    }
}
 
// This code is contributed by PrinciRaj1992


Javascript




// JavaScript program for finding min-cut in the given graph
 
// Returns true if there is a path
// from source 's' to sink 't' in residual
// graph. Also fills parent[] to store the path
function bfs(rGraph, s, t, parent){
    // Create a visited array and mark
    // all vertices as not visited
    var visited = new Array(rGraph.length).fill(false);
     
    // Create a queue, enqueue source vertex
    // and mark source vertex as visited
    let q = [];
    q.push(s);
    visited[s] = true;
    parent[s] = -1;
     
    // Standard BFS Loop
    while(q.length){
        var v = q.shift();
        for (let i = 0; i < rGraph.length; i++) {
            if (rGraph[v][i] > 0 && !visited[i]) {
                q.push(i);
                visited[i] = true;
                parent[i] = v;
            }
        }
    }
     
    // If we reached sink in BFS starting
    // from source, then return true, else false   
    return (visited[t] == true);
}
 
// A DFS based function to find all reachable
// vertices from s. The function marks visited[i]
// as true if i is reachable from s. The initial
// values in visited[] must be false. We can also
// use BFS to find reachable vertices
function dfs(rGraph, s, visited){
    visited[s] = true;
     
    for (let i = 0; i < rGraph.length; i++) {
        if (rGraph[s][i] > 0 && !visited[i]) {
            dfs(rGraph, i, visited);
        }
    }
}
 
// Prints the minimum s-t cut
function minCut(graph, s, t){
    var u;
    var v;
     
    // Create a residual graph and fill the residual
    // graph with given capacities in the original
    // graph as residual capacities in residual graph
    // rGraph[i][j] indicates residual capacity of edge i-j
    var rGraph = new Array(graph.length);
    for(let i=0;i<graph.length;i++){
        rGraph[i] = new Array(graph.length);
        for(let j=0;j<graph.length;j++){
            rGraph[i][j] = graph[i][j];
        }
    }
     
    // This array is filled by BFS and to store path
    var parent = new Array(graph.length);
     
    // Augment the flow while there is path from source to sink
    while(bfs(rGraph, s, t, parent)){
        // Find minimum residual capacity of the edges
        // along the path filled by BFS. Or we can say
        // find the maximum flow through the path found.
        var pathFlow = Number.MAX_VALUE;
        for (v = t; v != s; v = parent[v]) {
            u = parent[v];
            pathFlow = Math.min(pathFlow, rGraph[u][v]);
        }
         
        // update residual capacities of the edges and
        // reverse edges along the path
        for (v = t; v != s; v = parent[v]) {
            u = parent[v];
            rGraph[u][v] = rGraph[u][v] - pathFlow;
            rGraph[v][u] = rGraph[v][u] + pathFlow;
        }
    }
     
    // Flow is maximum now, find vertices reachable from s
    var isVisited = new Array(graph.length).fill(false);
    dfs(rGraph, s, isVisited);
     
    // Print all edges that are from a reachable vertex to
    // non-reachable vertex in the original graph
    for (let i = 0; i < graph.length; i++) {
        for (let j = 0; j < graph.length; j++) {
            if (graph[i][j] > 0 && isVisited[i] && !isVisited[j]) {
                console.log(i + " - " + j + "<br>");
            }
        }
    }
}
 
// Let us create a graph shown in the above example
var graph = [ [0, 16, 13, 0, 0, 0],
              [0, 0, 10, 12, 0, 0],
              [0, 4, 0, 0, 14, 0],
              [0, 0, 9, 0, 0, 20],
              [0, 0, 0, 7, 0, 4],
              [0, 0, 0, 0, 0, 0] ];
               
minCut(graph, 0, 5);
 
// This code is contributed by lokeshmvs21.


Output

1 - 3
4 - 3
4 - 5

Time Complexity: O(V.(E)2)

Space Complexity: O(V2)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments