Tuesday, January 7, 2025
Google search engine
HomeData Modelling & AIFind minimum positive integer x such that a(x^2) + b(x) + c...

Find minimum positive integer x such that a(x^2) + b(x) + c >= k

Given four integers a, b, c, and k. The task is to find the minimum positive value of x such that ax2 + bx + c ≥ k.

Examples: 

Input: a = 3, b = 4, c = 5, k = 6 
Output:
For x = 0, a * 0 + b * 0 + c = 5 < 6 
For x = 1, a * 1 + b * 1 + c = 3 + 4 + 5 = 12 > 6

Input: a = 2, b = 7, c = 6, k = 3 
Output:

Recommended Practice

Brute Force Approach:

The brute force approach to solve this problem would be to iterate over all possible values of x starting from 0 and check if ax^2 + bx + c is greater than or equal to k. If the condition is satisfied for any value of x, we return that x as the minimum positive integer satisfying the given equation.

Below is the implementation of the above approach: 

C++




#include <bits/stdc++.h>
using namespace std;
 
// Function to return the minimum positive
// integer satisfying the given equation
int MinimumX(int a, int b, int c, int k)
{
    int x = 0;
    while(a*x*x + b*x + c < k) {
        x++;
    }
    return x;
}
 
// Driver code
int main()
{
    int a = 3, b = 2, c = 4, k = 15;
    cout << MinimumX(a, b, c, k);
 
    return 0;
}


Java




import java.util.*;
 
public class Main {
     
    // Function to return the minimum positive
    // integer satisfying the given equation
    public static int MinimumX(int a, int b, int c, int k) {
        int x = 0;
        while(a*x*x + b*x + c < k) {
            x++;
        }
        return x;
    }
 
    // Driver code
    public static void main(String[] args) {
        int a = 3, b = 2, c = 4, k = 15;
        System.out.println(MinimumX(a, b, c, k));
    }
}


Python3




# Function to return the minimum positive
# integer satisfying the given equation
def MinimumX(a, b, c, k):
    x = 0
    while a*x*x + b*x + c < k:
        x += 1
    return x
 
# Driver code
def main():
    a = 3
    b = 2
    c = 4
    k = 15
    print(MinimumX(a, b, c, k))
 
if __name__ == "__main__":
    main()


C#




using System;
 
public class Program
{
    // Function to return the minimum positive
    // integer satisfying the given equation
    static int MinimumX(int a, int b, int c, int k)
    {
        int x = 0;
        while (a * x * x + b * x + c < k)
        {
            x++;
        }
        return x;
    }
 
    // Driver code
    public static void Main()
    {
        int a = 3, b = 2, c = 4, k = 15;
        Console.WriteLine(MinimumX(a, b, c, k));
    }
}


Javascript




// Function to return the minimum positive
// integer satisfying the given equation
function MinimumX(a, b, c, k) {
    let x = 0;
    while (a * x * x + b * x + c < k) {
        x++;
    }
    return x;
}
 
// Driver code
    const a = 3, b = 2, c = 4, k = 15;
    console.log(MinimumX(a, b, c, k));


Output

2




Time Complexity: O(K)
Auxiliary Space: O(1)

Approach: The idea is to use binary search. The lower limit for our search will be 0 since x has to be minimum positive integer.

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the minimum positive
// integer satisfying the given equation
int MinimumX(int a, int b, int c, int k)
{
    int x = INT_MAX;
 
    if (k <= c)
        return 0;
 
    int h = k - c;
    int l = 0;
 
    // Binary search to find the value of x
    while (l <= h) {
        int m = (l + h) / 2;
        if ((a * m * m) + (b * m) > (k - c)) {
            x = min(x, m);
            h = m - 1;
        }
        else if ((a * m * m) + (b * m) < (k - c))
            l = m + 1;
        else
            return m;
    }
 
    // Return the answer
    return x;
}
 
// Driver code
int main()
{
    int a = 3, b = 2, c = 4, k = 15;
    cout << MinimumX(a, b, c, k);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
     
// Function to return the minimum positive
// integer satisfying the given equation
static int MinimumX(int a, int b, int c, int k)
{
    int x = Integer.MAX_VALUE;
 
    if (k <= c)
        return 0;
 
    int h = k - c;
    int l = 0;
 
    // Binary search to find the value of x
    while (l <= h)
    {
        int m = (l + h) / 2;
        if ((a * m * m) + (b * m) > (k - c))
        {
            x = Math.min(x, m);
            h = m - 1;
        }
        else if ((a * m * m) + (b * m) < (k - c))
            l = m + 1;
        else
            return m;
    }
 
    // Return the answer
    return x;
}
 
// Driver code
public static void main(String[] args)
{
    int a = 3, b = 2, c = 4, k = 15;
    System.out.println(MinimumX(a, b, c, k));
}
}
 
// This code is contributed by Code_Mech.


Python3




# Python3 implementation of the approach
 
# Function to return the minimum positive
# integer satisfying the given equation
def MinimumX(a, b, c, k):
 
    x = 10**9
 
    if (k <= c):
        return 0
 
    h = k - c
    l = 0
 
    # Binary search to find the value of x
    while (l <= h):
        m = (l + h) // 2
        if ((a * m * m) + (b * m) > (k - c)):
            x = min(x, m)
            h = m - 1
 
        elif ((a * m * m) + (b * m) < (k - c)):
            l = m + 1
        else:
            return m
 
    # Return the answer
    return x
 
# Driver code
a, b, c, k = 3, 2, 4, 15
print(MinimumX(a, b, c, k))
 
# This code is contributed by mohit kumar


C#




// C# implementation of the approach
using System;
 
class GFG
{
     
// Function to return the minimum positive
// integer satisfying the given equation
static int MinimumX(int a, int b, int c, int k)
{
    int x = int.MaxValue;
 
    if (k <= c)
        return 0;
 
    int h = k - c;
    int l = 0;
 
    // Binary search to find the value of x
    while (l <= h)
    {
        int m = (l + h) / 2;
        if ((a * m * m) + (b * m) > (k - c))
        {
            x = Math.Min(x, m);
            h = m - 1;
        }
        else if ((a * m * m) + (b * m) < (k - c))
            l = m + 1;
        else
            return m;
    }
 
    // Return the answer
    return x;
}
 
// Driver code
public static void Main()
{
    int a = 3, b = 2, c = 4, k = 15;
    Console.Write(MinimumX(a, b, c, k));
}
}
 
// This code is contributed by Akanksha Rai


Javascript




<script>
// Javascript implementation of the approach
 
// Function to return the minimum positive
// integer satisfying the given equation
function MinimumX(a,b,c,k)
{
    let x = Number.MAX_VALUE;
   
    if (k <= c)
        return 0;
   
    let h = k - c;
    let l = 0;
   
    // Binary search to find the value of x
    while (l <= h)
    {
        let m = Math.floor((l + h) / 2);
        if ((a * m * m) + (b * m) > (k - c))
        {
            x = Math.min(x, m);
            h = m - 1;
        }
        else if ((a * m * m) + (b * m) < (k - c))
            l = m + 1;
        else
            return m;
    }
   
    // Return the answer
    return x;
}
 
// Driver code
let a = 3, b = 2, c = 4, k = 15;
document.write(MinimumX(a, b, c, k));
 
// This code is contributed by patel2127
</script>


PHP




<?php
// PHP implementation of the approach
 
// Function to return the minimum positive
// integer satisfying the given equation
function MinimumX($a, $b, $c, $k)
{
    $x = PHP_INT_MAX;
 
    if ($k <= $c)
        return 0;
 
    $h = $k - $c;
    $l = 0;
 
    // Binary search to find the value of x
    while ($l <= $h)
    {
        $m = floor(($l + $h) / 2);
        if (($a * $m * $m) +
            ($b * $m) > ($k - $c))
        {
            $x = min($x, $m);
            $h = $m - 1;
        }
        else if (($a * $m * $m) +
                 ($b * $m) < ($k - $c))
            $l = $m + 1;
        else
            return $m;
    }
 
    // Return the answer
    return $x;
}
 
// Driver code
$a = 3; $b = 2; $c = 4; $k = 15;
 
echo MinimumX($a, $b, $c, $k);
 
// This code is contributed by Ryuga
?>


Output

2




Time Complexity : O(log(k-c))
Auxiliary Space : O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments