Wednesday, January 8, 2025
Google search engine
HomeData Modelling & AIFind minimum changes required in an array for it to contain k...

Find minimum changes required in an array for it to contain k distinct elements

Given an array arr of size N and a number K. The task is to find the minimum elements to be replaced in the array with any number such that the array consists of K distinct elements.
Note: The array might consist of repeating elements. 
Examples: 
 

Input : arr[]={1, 2, 2, 8}, k = 1 
Output :
The elements to be changed are 1, 8
Input : arr[]={1, 2, 7, 8, 2, 3, 2, 3}, k = 2 
Output :
The elements to be changed are 1, 7, 8 
 

 

Approach: Since the task is to replace minimum elements from the array so we won’t replace elements which have more frequency in the array. So just define an array freq[] which stores the frequency of each number present in the array arr, then sort freq in descending order. So, first k elements of freq array don’t need to be replaced.
Below is the implementation of the above approach : 
 

C++




// CPP program to minimum changes required
// in an array for k distinct elements.
#include <bits/stdc++.h>
using namespace std;
 
#define MAX 100005
 
// Function to minimum changes required
// in an array for k distinct elements.
int Min_Replace(int arr[], int n, int k)
{
    sort(arr, arr + n);
 
    // Store the frequency of each element
    int freq[MAX];
     
    memset(freq, 0, sizeof freq);
     
    int p = 0;
    freq[p] = 1;
     
    // Store the frequency of elements
    for (int i = 1; i < n; i++) {
        if (arr[i] == arr[i - 1])
            ++freq[p];
        else
            ++freq[++p];
    }
 
    // Sort frequencies in descending order
    sort(freq, freq + n, greater<int>());
     
    // To store the required answer
    int ans = 0;
    for (int i = k; i <= p; i++)
        ans += freq[i];
         
    // Return the required answer
    return ans;
}
 
// Driver code
int main()
{
    int arr[] = { 1, 2, 7, 8, 2, 3, 2, 3 };
     
    int n = sizeof(arr) / sizeof(arr[0]);
     
    int k = 2;
     
    cout << Min_Replace(arr, n, k);
     
    return 0;
}


Java




// C# program to minimum changes required
// in an array for k distinct elements.
import java.util.*;
 
class GFG
{
    static int MAX = 100005;
     
    // Function to minimum changes required
    // in an array for k distinct elements.
    static int Min_Replace(int [] arr,
                           int n, int k)
    {
        Arrays.sort(arr);
     
        // Store the frequency of each element
        Integer [] freq = new Integer[MAX];
        Arrays.fill(freq, 0);
        int p = 0;
        freq[p] = 1;
         
        // Store the frequency of elements
        for (int i = 1; i < n; i++)
        {
            if (arr[i] == arr[i - 1])
                ++freq[p];
            else
                ++freq[++p];
        }
     
        // Sort frequencies in descending order
        Arrays.sort(freq, Collections.reverseOrder());
         
        // To store the required answer
        int ans = 0;
        for (int i = k; i <= p; i++)
            ans += freq[i];
             
        // Return the required answer
        return ans;
    }
     
    // Driver code
    public static void main (String []args)
    {
        int [] arr = { 1, 2, 7, 8, 2, 3, 2, 3 };
         
        int n = arr.length;
         
        int k = 2;
         
        System.out.println(Min_Replace(arr, n, k));
    }
}
 
// This code is contributed by PrinciRaj1992


Python3




# Python 3 program to minimum changes required
# in an array for k distinct elements.
MAX = 100005
 
# Function to minimum changes required
# in an array for k distinct elements.
def Min_Replace(arr, n, k):
    arr.sort(reverse = False)
 
    # Store the frequency of each element
    freq = [0 for i in range(MAX)]
     
    p = 0
    freq[p] = 1
     
    # Store the frequency of elements
    for i in range(1, n, 1):
        if (arr[i] == arr[i - 1]):
            freq[p] += 1
        else:
            p += 1
            freq[p] += 1
 
    # Sort frequencies in descending order
    freq.sort(reverse = True)
     
    # To store the required answer
    ans = 0
    for i in range(k, p + 1, 1):
        ans += freq[i]
         
    # Return the required answer
    return ans
 
# Driver code
if __name__ == '__main__':
    arr = [1, 2, 7, 8, 2, 3, 2, 3]
     
    n = len(arr)
     
    k = 2
     
    print(Min_Replace(arr, n, k))
     
# This code is contributed by
# Surendra_Gangwar


C#




// C# program to minimum changes required
// in an array for k distinct elements.
using System;
 
class GFG
{
    static int MAX = 100005;
     
    // Function to minimum changes required
    // in an array for k distinct elements.
    static int Min_Replace(int [] arr,
                           int n, int k)
    {
        Array.Sort(arr);
     
        // Store the frequency of each element
        int [] freq = new int[MAX];
         
        int p = 0;
        freq[p] = 1;
         
        // Store the frequency of elements
        for (int i = 1; i < n; i++)
        {
            if (arr[i] == arr[i - 1])
                ++freq[p];
            else
                ++freq[++p];
        }
     
        // Sort frequencies in descending order
        Array.Sort(freq);
        Array.Reverse(freq);
         
        // To store the required answer
        int ans = 0;
        for (int i = k; i <= p; i++)
            ans += freq[i];
             
        // Return the required answer
        return ans;
    }
     
    // Driver code
    public static void Main ()
    {
        int [] arr = { 1, 2, 7, 8, 2, 3, 2, 3 };
         
        int n = arr.Length;
         
        int k = 2;
         
        Console.WriteLine(Min_Replace(arr, n, k));
    }
}
 
// This code is contributed by ihritik


Javascript




<script>
 
// Javascript program to minimum changes required
// in an array for k distinct elements.
 
var MAX = 100005;
 
// Function to minimum changes required
// in an array for k distinct elements.
function Min_Replace(arr, n, k)
{
    arr.sort((a,b)=>a-b)
 
    // Store the frequency of each element
    var freq = Array(MAX).fill(0);
     
    var p = 0;
    freq[p] = 1;
     
    // Store the frequency of elements
    for (var i = 1; i < n; i++) {
        if (arr[i] == arr[i - 1])
            ++freq[p];
        else
            ++freq[++p];
    }
 
    // Sort frequencies in descending order
    freq.sort((a,b)=>b-a);
     
    // To store the required answer
    var ans = 0;
    for (var i = k; i <= p; i++)
        ans += freq[i];
         
    // Return the required answer
    return ans;
}
 
// Driver code
var arr = [1, 2, 7, 8, 2, 3, 2, 3];
var n = arr.length;
var k = 2;
document.write( Min_Replace(arr, n, k));
 
 
</script>


Output: 
 

3

Time Complexity : O(NlogN)

Auxiliary Space: O(1) because it is using constant size freq array
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments