Tuesday, January 7, 2025
Google search engine
HomeData Modelling & AIFind maximum xor of k elements in an array

Find maximum xor of k elements in an array

Given an array arr[] of N integers and an integer K. The task is to find the maximum xor subset of size K of the given array.

Examples: 

Input: arr[] = {2, 5, 4, 1, 3, 7, 6, 8}, K = 3 
Output: 15 
We obtain 15 by selecting 2, 5, 8
Input: arr[] = {3, 4, 7, 7, 9}, K = 3 
Output: 14 

Naive approach: Iterate over all subsets of size K of the array and find maximum xor among them.

Below is the implementation of the above approach:

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the maximum xor for a
// subset of size k from the given array
int Max_Xor(int arr[], int n, int k)
{
 
    // Initialize result
    int maxXor = INT_MIN;
 
    // Traverse all subsets of the array
    for (int i = 0; i < (1 << n); i++) {
 
        // __builtin_popcount() returns the number
        // of sets bits in an integer
        if (__builtin_popcount(i) == k) {
 
            // Initialize current xor as 0
            int cur_xor = 0;
            for (int j = 0; j < n; j++) {
 
                // If jth bit is set in i then include
                // jth element in the current xor
                if (i & (1 << j))
                    cur_xor = cur_xor ^ arr[j];
            }
 
            // Update maximum xor so far
            maxXor = max(maxXor, cur_xor);
        }
    }
    return maxXor;
}
 
// Driver code
int main()
{
    int arr[] = { 2, 5, 4, 1, 3, 7, 6, 8 };
    int n = sizeof(arr) / sizeof(int);
    int k = 3;
 
    cout << Max_Xor(arr, n, k);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
 
// Function to return the maximum xor for a
// subset of size k from the given array
static int Max_Xor(int arr[], int n, int k)
{
 
    // Initialize result
    int maxXor = Integer.MIN_VALUE;
 
    // Traverse all subsets of the array
    for (int i = 0; i < (1 << n); i++)
    {
 
        // __builtin_popcount() returns the number
        // of sets bits in an integer
        if (Integer.bitCount(i) == k)
        {
 
            // Initialize current xor as 0
            int cur_xor = 0;
            for (int j = 0; j < n; j++)
            {
 
                // If jth bit is set in i then include
                // jth element in the current xor
                if ((i & (1 << j)) == 0)
                    cur_xor = cur_xor ^ arr[j];
            }
 
            // Update maximum xor so far
            maxXor = Math.max(maxXor, cur_xor);
        }
    }
    return maxXor;
}
 
// Driver code
public static void main(String[] args)
{
    int arr[] = { 2, 5, 4, 1, 3, 7, 6, 8 };
    int n = arr.length;
    int k = 3;
 
    System.out.println(Max_Xor(arr, n, k));
}
}
 
// This code is contributed by PrinciRaj1992


Python3




# Python implementation of the approach
 
MAX = 10000
MAX_ELEMENT = 50
 
dp =[[[-1 for i in range(MAX)]
    for j in range(MAX_ELEMENT)]
    for k in range(MAX_ELEMENT)]
 
# Function to return the maximum xor for a
# subset of size j from the given array
def Max_Xor(arr, i, j, mask, n):
    if (i >= n):
         
        # If the subset is complete then return
        # the xor value of the selected elements
        if (j == 0):
            return mask
        else:
            return 0
     
    # Return if already calculated for some
    # mask and j at the i'th index
    if (dp[i][j][mask] != -1):
        return dp[i][j][mask]
     
    # Initialize answer to 0
    ans = 0
     
    # If we can still include elements in our subset
    # include the i'th element
    if (j > 0):
        ans = Max_Xor(arr, i + 1, j - 1, mask ^ arr[i], n)
         
    # Exclude the i'th element
    # ans store the max of both operations
    ans = max(ans, Max_Xor(arr, i + 1, j, mask, n))
    dp[i][j][mask] = ans
    return ans
 
# Driver code
arr = [2, 5, 4, 1, 3, 7, 6, 8]
n = len(arr)
k = 3
 
print(Max_Xor(arr, 0, k, 0, n))
 
# This code is contributed by shubhamsingh10


C#




// C# implementation of the approach
using System;
     
class GFG
{
 
// Function to return the maximum xor for a
// subset of size k from the given array
static int Max_Xor(int []arr, int n, int k)
{
 
    // Initialize result
    int maxXor = int.MinValue;
 
    // Traverse all subsets of the array
    for (int i = 0; i < (1 << n); i++)
    {
 
        // __builtin_popcount() returns the number
        // of sets bits in an integer
        if (bitCount(i) == k)
        {
 
            // Initialize current xor as 0
            int cur_xor = 0;
            for (int j = 0; j < n; j++)
            {
 
                // If jth bit is set in i then include
                // jth element in the current xor
                if ((i & (1 << j)) == 0)
                    cur_xor = cur_xor ^ arr[j];
            }
 
            // Update maximum xor so far
            maxXor = Math.Max(maxXor, cur_xor);
        }
    }
    return maxXor;
}
 
static int bitCount(long x)
{
    int setBits = 0;
    while (x != 0)
    {
        x = x & (x - 1);
        setBits++;
    }
    return setBits;
}
 
// Driver code
public static void Main(String[] args)
{
    int []arr = { 2, 5, 4, 1, 3, 7, 6, 8 };
    int n = arr.Length;
    int k = 3;
 
    Console.WriteLine(Max_Xor(arr, n, k));
}
}
 
// This code is contributed by Princi Singh


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to return the maximum xor for a
// subset of size k from the given array
function Max_Xor(arr, n, k)
{
 
    // Initialize result
    let maxXor = Number.MIN_VALUE;
 
    // Traverse all subsets of the array
    for (let i = 0; i < (1 << n); i++) {
 
        // bitCount() returns the number
        // of sets bits in an integer
        if (bitCount(i) == k) {
 
            // Initialize current xor as 0
            let cur_xor = 0;
            for (let j = 0; j < n; j++) {
 
                // If jth bit is set in i then include
                // jth element in the current xor
                if (i & (1 << j))
                    cur_xor = cur_xor ^ arr[j];
            }
 
            // Update maximum xor so far
            maxXor = Math.max(maxXor, cur_xor);
        }
    }
    return maxXor;
}
 
function bitCount(x)
{
    let setBits = 0;
    while (x != 0)
    {
        x = x & (x - 1);
        setBits++;
    }
    return setBits;
}
 
// Driver code
    let arr = [ 2, 5, 4, 1, 3, 7, 6, 8 ];
    let n = arr.length;
    let k = 3;
 
    document.write(Max_Xor(arr, n, k));
 
</script>


Output

15

Time Complexity: O(n*2n)
Auxiliary Space: O(1)

Efficient approach: The problem can be solved using dynamic programming. Create a dp table dp[i][j][mask] which stores the maximum xor possible at the ith index (with or without including it) and j denotes the number of remaining elements we can include in our subset of K elements. Mask is the xor of all the elements selected till the ith index. 
Note: This approach will only work for smaller arrays due to space requirements for the dp array.

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
#define MAX 10000
#define MAX_ELEMENT 50
 
int dp[MAX_ELEMENT][MAX_ELEMENT][MAX];
 
// Function to return the maximum xor for a
// subset of size j from the given array
int Max_Xor(int arr[], int i, int j, int mask, int n)
{
    if (i >= n) {
 
        // If the subset is complete then return
        // the xor value of the selected elements
        if (j == 0)
            return mask;
        else
            return 0;
    }
 
    // Return if already calculated for some
    // mask and j at the i'th index
    if (dp[i][j][mask] != -1)
        return dp[i][j][mask];
 
    // Initialize answer to 0
    int ans = 0;
 
    // If we can still include elements in our subset
    // include the i'th element
    if (j > 0)
        ans = Max_Xor(arr, i + 1, j - 1, mask ^ arr[i], n);
 
    // Exclude the i'th element
    // ans store the max of both operations
    ans = max(ans, Max_Xor(arr, i + 1, j, mask, n));
 
    return dp[i][j][mask] = ans;
}
 
// Driver code
int main()
{
    int arr[] = { 2, 5, 4, 1, 3, 7, 6, 8 };
    int n = sizeof(arr) / sizeof(int);
    int k = 3;
 
    memset(dp, -1, sizeof(dp));
 
    cout << Max_Xor(arr, 0, k, 0, n);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
static int MAX = 10000;
static int MAX_ELEMENT = 50;
 
static int [][][] dp = new int[MAX_ELEMENT][MAX_ELEMENT][MAX];
 
// Function to return the maximum xor for a
// subset of size j from the given array
static int Max_Xor(int arr[], int i,
                   int j, int mask, int n)
{
    if (i >= n)
    {
 
        // If the subset is complete then return
        // the xor value of the selected elements
        if (j == 0)
            return mask;
        else
            return 0;
    }
 
    // Return if already calculated for some
    // mask and j at the i'th index
    if (dp[i][j][mask] != -1)
        return dp[i][j][mask];
 
    // Initialize answer to 0
    int ans = 0;
 
    // If we can still include elements in our subset
    // include the i'th element
    if (j > 0)
        ans = Max_Xor(arr, i + 1, j - 1,
                      mask ^ arr[i], n);
 
    // Exclude the i'th element
    // ans store the max of both operations
    ans = Math.max(ans, Max_Xor(arr, i + 1, j,
                                mask, n));
 
    return dp[i][j][mask] = ans;
}
 
// Driver code
public static void main(String[] args)
{
    int arr[] = { 2, 5, 4, 1, 3, 7, 6, 8 };
    int n = arr.length;
    int k = 3;
 
    for(int i = 0; i < MAX_ELEMENT; i++)
    {
        for(int j = 0; j < MAX_ELEMENT; j++)
        {
            for(int l = 0; l < MAX; l++)
            dp[i][j][l] = -1;
        }
    }
 
    System.out.println(Max_Xor(arr, 0, k, 0, n));
}
}
 
// This code is contributed by Princi Singh


Python3




# Python implementation of the approach
 
MAX = 10000
MAX_ELEMENT = 50
 
dp =[[[-1 for i in range(MAX)] for j in range(MAX_ELEMENT)] for k in range(MAX_ELEMENT)]
 
# Function to return the maximum xor for a
# subset of size j from the given array
def Max_Xor(arr, i, j, mask, n):
    if (i >= n):
         
        # If the subset is complete then return
        # the xor value of the selected elements
        if (j == 0):
            return mask
        else:
            return 0
     
    # Return if already calculated for some
    # mask and j at the i'th index
    if (dp[i][j][mask] != -1):
        return dp[i][j][mask]
     
    # Initialize answer to 0
    ans = 0
     
    # If we can still include elements in our subset
    # include the i'th element
    if (j > 0):
        ans = Max_Xor(arr, i + 1, j - 1, mask ^ arr[i], n)
         
    # Exclude the i'th element
    # ans store the max of both operations
    ans = max(ans, Max_Xor(arr, i + 1, j, mask, n))
    dp[i][j][mask] = ans
    return ans
 
 
# Driver code
 
arr = [2, 5, 4, 1, 3, 7, 6, 8]
n = len(arr)
k = 3
 
print(Max_Xor(arr, 0, k, 0, n))
 
# This code is contributed by shubhamsingh10


C#




// C# implementation of the approach
using System;
 
class GFG
{
  static int MAX = 10000;
  static int MAX_ELEMENT = 50;
  static int [,,] dp = new int[MAX_ELEMENT, MAX_ELEMENT, MAX];
 
  // Function to return the maximum xor for a
  // subset of size j from the given array
  static int Max_Xor(int[] arr, int i,
                     int j, int mask, int n)
  {
    if (i >= n)
    {
 
      // If the subset is complete then return
      // the xor value of the selected elements
      if (j == 0)
        return mask;
      else
        return 0;
    }
 
    // Return if already calculated for some
    // mask and j at the i'th index
    if (dp[i,j,mask] != -1)
      return dp[i,j,mask];
 
    // Initialize answer to 0
    int ans = 0;
 
    // If we can still include elements in our subset
    // include the i'th element
    if (j > 0)
      ans = Max_Xor(arr, i + 1, j - 1,
                    mask ^ arr[i], n);
 
    // Exclude the i'th element
    // ans store the max of both operations
    ans = Math.Max(ans, Max_Xor(arr, i + 1, j,
                                mask, n));
 
    return dp[i,j,mask] = ans;
  }
 
  // Driver code
  public static void Main ()
  {
    int[] arr = { 2, 5, 4, 1, 3, 7, 6, 8 };
    int n = arr.Length;
    int k = 3;
 
    for(int i = 0; i < MAX_ELEMENT; i++)
    {
      for(int j = 0; j < MAX_ELEMENT; j++)
      {
        for(int l = 0; l < MAX; l++)
          dp[i,j,l] = -1;
      }
    }
 
    Console.WriteLine(Max_Xor(arr, 0, k, 0, n));
  }
}
 
// This code is contributed by target_2.


Javascript




//JS implementation of the approach
 
const MAX = 10000;
const MAX_ELEMENT = 50;
 
//declaring and building dp
var dp = [];
for (var i = 0; i < MAX_ELEMENT; i++)
{
    dp[i] = [];
    for (var j = 0; j < MAX_ELEMENT; j++)
    {
        dp[i][j] = [];
        for (var k = 0; k < MAX_ELEMENT; k++)
        {
            dp[i][j][k] = -1;
        }
    }
}
 
 
 
// Function to return the maximum xor for a
// subset of size j from the given array
function Max_Xor(arr, i, j, mask, n)
{
    if (i >= n)
    {
        // If the subset is complete then return
        // the xor value of the selected elements
        if (j == 0)
            return mask;
        else
            return 0;
    }
     
    // Return if already calculated for some
    // mask and j at the i'th index
    if (dp[i][j][mask] != -1)
        return dp[i][j][mask];
     
    // Initialize answer to 0
    var ans = 0;
     
    // If we can still include elements in our subset
    // include the i'th element
    if (j > 0)
        ans = Max_Xor(arr, i + 1, j - 1, mask ^ arr[i], n);
         
    // Exclude the i'th element
    // ans store the max of both operations
    ans = Math.max(ans, Max_Xor(arr, i + 1, j, mask, n));
    dp[i][j][mask] = ans;
    return ans;
}
 
 
// Driver code
 
var arr = [2, 5, 4, 1, 3, 7, 6, 8];
var n = arr.length;
var k = 3;
 
console.log(Max_Xor(arr, 0, k, 0, n));
 
// This code is contributed by phasing17


Output

15

Time Complexity: O(n*n)
Auxiliary Space: O(MAX*MAX_ELEMENT2) where MAX and MAX_ELEMENT are defined constants.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments