Given an array arr[] of N integers and an integer K. The task is to find the maximum xor subset of size K of the given array.
Examples:
Input: arr[] = {2, 5, 4, 1, 3, 7, 6, 8}, K = 3
Output: 15
We obtain 15 by selecting 2, 5, 8
Input: arr[] = {3, 4, 7, 7, 9}, K = 3
Output: 14
Naive approach: Iterate over all subsets of size K of the array and find maximum xor among them.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the maximum xor for a // subset of size k from the given array int Max_Xor( int arr[], int n, int k) { // Initialize result int maxXor = INT_MIN; // Traverse all subsets of the array for ( int i = 0; i < (1 << n); i++) { // __builtin_popcount() returns the number // of sets bits in an integer if (__builtin_popcount(i) == k) { // Initialize current xor as 0 int cur_xor = 0; for ( int j = 0; j < n; j++) { // If jth bit is set in i then include // jth element in the current xor if (i & (1 << j)) cur_xor = cur_xor ^ arr[j]; } // Update maximum xor so far maxXor = max(maxXor, cur_xor); } } return maxXor; } // Driver code int main() { int arr[] = { 2, 5, 4, 1, 3, 7, 6, 8 }; int n = sizeof (arr) / sizeof ( int ); int k = 3; cout << Max_Xor(arr, n, k); return 0; } |
Java
// Java implementation of the approach import java.util.*; class GFG { // Function to return the maximum xor for a // subset of size k from the given array static int Max_Xor( int arr[], int n, int k) { // Initialize result int maxXor = Integer.MIN_VALUE; // Traverse all subsets of the array for ( int i = 0 ; i < ( 1 << n); i++) { // __builtin_popcount() returns the number // of sets bits in an integer if (Integer.bitCount(i) == k) { // Initialize current xor as 0 int cur_xor = 0 ; for ( int j = 0 ; j < n; j++) { // If jth bit is set in i then include // jth element in the current xor if ((i & ( 1 << j)) == 0 ) cur_xor = cur_xor ^ arr[j]; } // Update maximum xor so far maxXor = Math.max(maxXor, cur_xor); } } return maxXor; } // Driver code public static void main(String[] args) { int arr[] = { 2 , 5 , 4 , 1 , 3 , 7 , 6 , 8 }; int n = arr.length; int k = 3 ; System.out.println(Max_Xor(arr, n, k)); } } // This code is contributed by PrinciRaj1992 |
Python3
# Python implementation of the approach MAX = 10000 MAX_ELEMENT = 50 dp = [[[ - 1 for i in range ( MAX )] for j in range (MAX_ELEMENT)] for k in range (MAX_ELEMENT)] # Function to return the maximum xor for a # subset of size j from the given array def Max_Xor(arr, i, j, mask, n): if (i > = n): # If the subset is complete then return # the xor value of the selected elements if (j = = 0 ): return mask else : return 0 # Return if already calculated for some # mask and j at the i'th index if (dp[i][j][mask] ! = - 1 ): return dp[i][j][mask] # Initialize answer to 0 ans = 0 # If we can still include elements in our subset # include the i'th element if (j > 0 ): ans = Max_Xor(arr, i + 1 , j - 1 , mask ^ arr[i], n) # Exclude the i'th element # ans store the max of both operations ans = max (ans, Max_Xor(arr, i + 1 , j, mask, n)) dp[i][j][mask] = ans return ans # Driver code arr = [ 2 , 5 , 4 , 1 , 3 , 7 , 6 , 8 ] n = len (arr) k = 3 print (Max_Xor(arr, 0 , k, 0 , n)) # This code is contributed by shubhamsingh10 |
C#
// C# implementation of the approach using System; class GFG { // Function to return the maximum xor for a // subset of size k from the given array static int Max_Xor( int []arr, int n, int k) { // Initialize result int maxXor = int .MinValue; // Traverse all subsets of the array for ( int i = 0; i < (1 << n); i++) { // __builtin_popcount() returns the number // of sets bits in an integer if (bitCount(i) == k) { // Initialize current xor as 0 int cur_xor = 0; for ( int j = 0; j < n; j++) { // If jth bit is set in i then include // jth element in the current xor if ((i & (1 << j)) == 0) cur_xor = cur_xor ^ arr[j]; } // Update maximum xor so far maxXor = Math.Max(maxXor, cur_xor); } } return maxXor; } static int bitCount( long x) { int setBits = 0; while (x != 0) { x = x & (x - 1); setBits++; } return setBits; } // Driver code public static void Main(String[] args) { int []arr = { 2, 5, 4, 1, 3, 7, 6, 8 }; int n = arr.Length; int k = 3; Console.WriteLine(Max_Xor(arr, n, k)); } } // This code is contributed by Princi Singh |
Javascript
<script> // Javascript implementation of the approach // Function to return the maximum xor for a // subset of size k from the given array function Max_Xor(arr, n, k) { // Initialize result let maxXor = Number.MIN_VALUE; // Traverse all subsets of the array for (let i = 0; i < (1 << n); i++) { // bitCount() returns the number // of sets bits in an integer if (bitCount(i) == k) { // Initialize current xor as 0 let cur_xor = 0; for (let j = 0; j < n; j++) { // If jth bit is set in i then include // jth element in the current xor if (i & (1 << j)) cur_xor = cur_xor ^ arr[j]; } // Update maximum xor so far maxXor = Math.max(maxXor, cur_xor); } } return maxXor; } function bitCount(x) { let setBits = 0; while (x != 0) { x = x & (x - 1); setBits++; } return setBits; } // Driver code let arr = [ 2, 5, 4, 1, 3, 7, 6, 8 ]; let n = arr.length; let k = 3; document.write(Max_Xor(arr, n, k)); </script> |
15
Time Complexity: O(n*2n)
Auxiliary Space: O(1)
Efficient approach: The problem can be solved using dynamic programming. Create a dp table dp[i][j][mask] which stores the maximum xor possible at the ith index (with or without including it) and j denotes the number of remaining elements we can include in our subset of K elements. Mask is the xor of all the elements selected till the ith index.
Note: This approach will only work for smaller arrays due to space requirements for the dp array.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; #define MAX 10000 #define MAX_ELEMENT 50 int dp[MAX_ELEMENT][MAX_ELEMENT][MAX]; // Function to return the maximum xor for a // subset of size j from the given array int Max_Xor( int arr[], int i, int j, int mask, int n) { if (i >= n) { // If the subset is complete then return // the xor value of the selected elements if (j == 0) return mask; else return 0; } // Return if already calculated for some // mask and j at the i'th index if (dp[i][j][mask] != -1) return dp[i][j][mask]; // Initialize answer to 0 int ans = 0; // If we can still include elements in our subset // include the i'th element if (j > 0) ans = Max_Xor(arr, i + 1, j - 1, mask ^ arr[i], n); // Exclude the i'th element // ans store the max of both operations ans = max(ans, Max_Xor(arr, i + 1, j, mask, n)); return dp[i][j][mask] = ans; } // Driver code int main() { int arr[] = { 2, 5, 4, 1, 3, 7, 6, 8 }; int n = sizeof (arr) / sizeof ( int ); int k = 3; memset (dp, -1, sizeof (dp)); cout << Max_Xor(arr, 0, k, 0, n); return 0; } |
Java
// Java implementation of the approach import java.util.*; class GFG { static int MAX = 10000 ; static int MAX_ELEMENT = 50 ; static int [][][] dp = new int [MAX_ELEMENT][MAX_ELEMENT][MAX]; // Function to return the maximum xor for a // subset of size j from the given array static int Max_Xor( int arr[], int i, int j, int mask, int n) { if (i >= n) { // If the subset is complete then return // the xor value of the selected elements if (j == 0 ) return mask; else return 0 ; } // Return if already calculated for some // mask and j at the i'th index if (dp[i][j][mask] != - 1 ) return dp[i][j][mask]; // Initialize answer to 0 int ans = 0 ; // If we can still include elements in our subset // include the i'th element if (j > 0 ) ans = Max_Xor(arr, i + 1 , j - 1 , mask ^ arr[i], n); // Exclude the i'th element // ans store the max of both operations ans = Math.max(ans, Max_Xor(arr, i + 1 , j, mask, n)); return dp[i][j][mask] = ans; } // Driver code public static void main(String[] args) { int arr[] = { 2 , 5 , 4 , 1 , 3 , 7 , 6 , 8 }; int n = arr.length; int k = 3 ; for ( int i = 0 ; i < MAX_ELEMENT; i++) { for ( int j = 0 ; j < MAX_ELEMENT; j++) { for ( int l = 0 ; l < MAX; l++) dp[i][j][l] = - 1 ; } } System.out.println(Max_Xor(arr, 0 , k, 0 , n)); } } // This code is contributed by Princi Singh |
Python3
# Python implementation of the approach MAX = 10000 MAX_ELEMENT = 50 dp = [[[ - 1 for i in range ( MAX )] for j in range (MAX_ELEMENT)] for k in range (MAX_ELEMENT)] # Function to return the maximum xor for a # subset of size j from the given array def Max_Xor(arr, i, j, mask, n): if (i > = n): # If the subset is complete then return # the xor value of the selected elements if (j = = 0 ): return mask else : return 0 # Return if already calculated for some # mask and j at the i'th index if (dp[i][j][mask] ! = - 1 ): return dp[i][j][mask] # Initialize answer to 0 ans = 0 # If we can still include elements in our subset # include the i'th element if (j > 0 ): ans = Max_Xor(arr, i + 1 , j - 1 , mask ^ arr[i], n) # Exclude the i'th element # ans store the max of both operations ans = max (ans, Max_Xor(arr, i + 1 , j, mask, n)) dp[i][j][mask] = ans return ans # Driver code arr = [ 2 , 5 , 4 , 1 , 3 , 7 , 6 , 8 ] n = len (arr) k = 3 print (Max_Xor(arr, 0 , k, 0 , n)) # This code is contributed by shubhamsingh10 |
C#
// C# implementation of the approach using System; class GFG { static int MAX = 10000; static int MAX_ELEMENT = 50; static int [,,] dp = new int [MAX_ELEMENT, MAX_ELEMENT, MAX]; // Function to return the maximum xor for a // subset of size j from the given array static int Max_Xor( int [] arr, int i, int j, int mask, int n) { if (i >= n) { // If the subset is complete then return // the xor value of the selected elements if (j == 0) return mask; else return 0; } // Return if already calculated for some // mask and j at the i'th index if (dp[i,j,mask] != -1) return dp[i,j,mask]; // Initialize answer to 0 int ans = 0; // If we can still include elements in our subset // include the i'th element if (j > 0) ans = Max_Xor(arr, i + 1, j - 1, mask ^ arr[i], n); // Exclude the i'th element // ans store the max of both operations ans = Math.Max(ans, Max_Xor(arr, i + 1, j, mask, n)); return dp[i,j,mask] = ans; } // Driver code public static void Main () { int [] arr = { 2, 5, 4, 1, 3, 7, 6, 8 }; int n = arr.Length; int k = 3; for ( int i = 0; i < MAX_ELEMENT; i++) { for ( int j = 0; j < MAX_ELEMENT; j++) { for ( int l = 0; l < MAX; l++) dp[i,j,l] = -1; } } Console.WriteLine(Max_Xor(arr, 0, k, 0, n)); } } // This code is contributed by target_2. |
Javascript
//JS implementation of the approach const MAX = 10000; const MAX_ELEMENT = 50; //declaring and building dp var dp = []; for ( var i = 0; i < MAX_ELEMENT; i++) { dp[i] = []; for ( var j = 0; j < MAX_ELEMENT; j++) { dp[i][j] = []; for ( var k = 0; k < MAX_ELEMENT; k++) { dp[i][j][k] = -1; } } } // Function to return the maximum xor for a // subset of size j from the given array function Max_Xor(arr, i, j, mask, n) { if (i >= n) { // If the subset is complete then return // the xor value of the selected elements if (j == 0) return mask; else return 0; } // Return if already calculated for some // mask and j at the i'th index if (dp[i][j][mask] != -1) return dp[i][j][mask]; // Initialize answer to 0 var ans = 0; // If we can still include elements in our subset // include the i'th element if (j > 0) ans = Max_Xor(arr, i + 1, j - 1, mask ^ arr[i], n); // Exclude the i'th element // ans store the max of both operations ans = Math.max(ans, Max_Xor(arr, i + 1, j, mask, n)); dp[i][j][mask] = ans; return ans; } // Driver code var arr = [2, 5, 4, 1, 3, 7, 6, 8]; var n = arr.length; var k = 3; console.log(Max_Xor(arr, 0, k, 0, n)); // This code is contributed by phasing17 |
15
Time Complexity: O(n*n)
Auxiliary Space: O(MAX*MAX_ELEMENT2) where MAX and MAX_ELEMENT are defined constants.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!