Given an array arr[] of N elements, you have to perform the following operation on the given array until the array is reduced to a single elements,
- Choose two indices i and j such that i != j.
- Replace arr[i] with arr[i] – arr[j] and remove arr[j] from the array.
The task is to maximize and print the value of the last remaining element of the array.
Examples:
Input: arr[] = {20, 3, -15, 7}
Output: 45
Step 1: We can remove 7 and replace -15 with -22.
step 2: We can remove 3 and replace -22 with -25.
step 3: We can remove -25 and replace 20 with 45.
So 45 is the maximum value that we can get.
Input: arr[] = {5, 4, 6, 2}
Output: 13
Approach: In order to maximize the value of the last remaining element, there are three cases:
- Array has negative as well as positive numbers: First we will subtract all positive numbers (except one) from negative numbers. After this, we will only be left with a single positive and a single negative number. Now, we will subtract that negative number from the positive one which will yield a positive number at last as a result. So, in this case, the result is the sum of absolute values of the array elements.
- Array contains only positive numbers: First we find the smallest number and then subtract all positive numbers from it except one positive number. After this we get just one positive number and one negative number, now we will subtract the negative number from that positive one which will yield a positive number at last as a result. Here we can observe that the smallest
number has vanished and also the value is basically cut out from next greater element which is different from case 1. So, in this case the result is the sum of absolute values of array elements – 2 * minimum element. - Array contains only negative numbers: First we find the largest number and then subtract all negative number from it except one negative number. After this we get just one negative number and one positive number, now we will subtract the negative number from that positive one which will yield a positive number at last as a result. Here we can observe that the largest number has vanished and also the value is basically cut out from next greater element which is different from case 1. So in this case the result is the sum of the absolute values of array elements – 2 * absolute of largest element. Here we take largest as absolute of largest is smallest in case of negative number.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the maximized value int find_maximum_value( int a[], int n) { int sum = 0; int minimum = INT_MAX; int pos = 0, neg = 0; for ( int i = 0; i < n; i++) { // Overall minimum absolute value // of some element from the array minimum = min(minimum, abs (a[i])); // Add all absolute values sum += abs (a[i]); // Count positive and negative elements if (a[i] >= 0) pos += 1; else neg += 1; } // Both positive and negative // values are present if (pos > 0 && neg > 0) return sum; // Only positive or negative // values are present return (sum - 2 * minimum); } // Driver code int main() { int a[] = { 5, 4, 6, 2 }; int n = sizeof (a) / sizeof (a[0]); cout << find_maximum_value(a, n); return 0; } |
Java
// Java implementation of the approach import java.io.*; class GFG { // Function to return the maximized value static int find_maximum_value( int a[], int n) { int sum = 0 ; int minimum = Integer.MAX_VALUE; int pos = 0 , neg = 0 ; for ( int i = 0 ; i < n; i++) { // Overall minimum absolute value // of some element from the array minimum = Math.min(minimum, Math.abs(a[i])); // Add all absolute values sum += Math.abs(a[i]); // Count positive and negative elements if (a[i] >= 0 ) pos += 1 ; else neg += 1 ; } // Both positive and negative // values are present if (pos > 0 && neg > 0 ) return sum; // Only positive or negative // values are present return (sum - 2 * minimum); } // Driver code public static void main (String[] args) { int []a = { 5 , 4 , 6 , 2 }; int n = a.length; System.out.println(find_maximum_value(a, n)); } } // This code is contributed by ajit |
Python
# Python3 implementation of the approach # Function to return the maximized value def find_maximum_value(a, n): sum = 0 minimum = 10 * * 9 pos = 0 neg = 0 for i in range (n): # Overall minimum absolute value # of some element from the array minimum = min (minimum, abs (a[i])) # Add all absolute values sum + = abs (a[i]) # Count positive and negative elements if (a[i] > = 0 ): pos + = 1 else : neg + = 1 # Both positive and negative # values are present if (pos > 0 and neg > 0 ): return sum # Only positive or negative # values are present return ( sum - 2 * minimum) # Driver code a = [ 5 , 4 , 6 , 2 ] n = len (a) print (find_maximum_value(a, n)) # This code is contributed by mohit kumar 29 |
C#
// C# implementation of the approach using System; class GFG { // Function to return the maximized value static int find_maximum_value( int []a, int n) { int sum = 0; int minimum = int .MaxValue; int pos = 0, neg = 0; for ( int i = 0; i < n; i++) { // Overall minimum absolute value // of some element from the array minimum = Math.Min(minimum, Math.Abs(a[i])); // Add all absolute values sum += Math.Abs(a[i]); // Count positive and negative elements if (a[i] >= 0) pos += 1; else neg += 1; } // Both positive and negative // values are present if (pos > 0 && neg > 0) return sum; // Only positive or negative // values are present return (sum - 2 * minimum); } // Driver code static public void Main () { int []a = { 5, 4, 6, 2 }; int n = a.Length; Console.WriteLine(find_maximum_value(a, n)); } } // This code is contributed by AnkitRai01 |
Javascript
<script> // javascript implementation of the approach // Function to return the maximized value function find_maximum_value(a , n) { var sum = 0; var minimum = Number.MAX_VALUE; var pos = 0, neg = 0; for (i = 0; i < n; i++) { // Overall minimum absolute value // of some element from the array minimum = Math.min(minimum, Math.abs(a[i])); // Add all absolute values sum += Math.abs(a[i]); // Count positive and negative elements if (a[i] >= 0) pos += 1; else neg += 1; } // Both positive and negative // values are present if (pos > 0 && neg > 0) return sum; // Only positive or negative // values are present return (sum - 2 * minimum); } // Driver code var a = [ 5, 4, 6, 2 ]; var n = a.length; document.write(find_maximum_value(a, n)); // This code is contributed by todaysgaurav </script> |
13
Time Complexity: O(N)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!