Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIFind maximum sum by replacing the Subarray in given range

Find maximum sum by replacing the Subarray in given range

Given an array arr[], the task is to find the maximum sum possible such that any subarray of the indices from [l, r] i.e all subarray elements from arr[l] to arr[r] can be replaced with |arr[l] – arr[r]| any number of times.

Examples:

Input: arr[] = { 9, 1}
Output: 16
Explanation: The subarray [l, r] can choose as [0, 1] so it can be replaced as { | 9 – 1 |, | 9 – 1 | } = {8, 8} this is the only array that gives the maximum sum as 16.

Input: arr[] = {1, 1, 1}
Output: 3
Explanation: The array from indices [1, 2] can be chosen then the array becomes {1, |1 – 1|, |1 – 1| } which is equal to {1, 0, 0} now choosing the subarray from indices [0, 2] the array becomes { | 1 – 0 |, |1 – 0 |, | 1 – 0 |} which is equal to {1, 1, 1}. The maximum possible sum is 3.

Approach: To solve the problem follow the below idea:

This problem can be solved greedily by figuring out a way through observations for replacing the array with the maximum elements. The observation is like if any else chooses max one) having more than two elements to the left or right we can replace the array with that elements by doing the following operations:

Consider n = 4 and maximum element is arr[1] so {arr[0], arr[1], arr[2], arr[3]}

  • In the first operation choosing subarray [2, 3] the array becomes {arr[0 ], arr[1], |arr[2] – arr[3]|, |arr[2] – arr[3]|}
  • In the second operation choosing subarray [2, 3] the array becomes { arr[0], arr[1], 0, 0}
  • In the third operation choosing the subarray [1, 3] the array becomes { arr[0], arr[1], arr[1], arr[1]}
  • In the fourth operation on choosing the subarray [0, 1] the array becomes {| arr[0] – arr[1]|, |arr[0] – arr[1]|, arr[1], arr[1]}
  • In the 5th and 6th operations we choose subarrays [0, 1] and [0, 2] and the final array becomes {arr[1], arr[1], arr[1], arr[1]}. 

In this way for n > 4 we can replace all the array elements with the max element of the array.

  • Edge cases for n = 3, n = 2:
  • For n = 2 we take  max({2 * abs(arr[0] – arr[1]), arr[0] + arr[1]});
  • For n = 3 we take max({3 * (abs(arr[0] – arr[1])), 3 * (abs(arr[2] – arr[1])), 3 * arr[0], 3 * arr[2], arr[0] + arr[1] + arr[2]} because the middle element doesn’t have 2 elements on either of the sides for n = 3.

Follow these steps to solve the above problem:

  • Check if the size of the array is 2 only possible sums are 2 * abs(arr[0] – arr[1]), arr[0] + arr[1] return max of all.
  • Check if the size of the arrays is 3 all possible sums are 3 * (abs(arr[0] – arr[1])), 3 * (abs(arr[2] – arr[1])), 3 * arr[0], 3 * arr[2], arr[0] + arr[1] + arr[2] return a max of all.
  • If the size is >3 then we can replace all the elements with the maximum element
  • Initialize a variable mx = 0.
  • Iterate through the array and find the maximum element
  • Return n*mx.

Below is the implementation of the above approach:

C++




// C++ code for the above approach
#include <bits/stdc++.h>
using namespace std;
 
int find_maxsum(int arr[], int n)
{
 
    // If size of the array is 2 only
    // possible sums are
    // 2 * abs(arr[0] - arr[1]),
    // arr[0] + arr[1]
    if (n == 2)
        return max(
            { 2 * abs(arr[0] - arr[1]), arr[0] + arr[1] });
 
    // If the size of the arrays is 3 all
    // possible sums are
    // 3 * (abs(arr[0] - arr[1])),
    // 3 * (abs(arr[2] - arr[1])),
    // 3 * arr[0], 3 * arr[2],
    // arr[0] + arr[1] + arr[2]
    else if (n == 3)
        return max({ 3 * (abs(arr[0] - arr[1])),
                     3 * (abs(arr[2] - arr[1])), 3 * arr[0],
                     3 * arr[2],
                     arr[0] + arr[1] + arr[2] });
 
    // If the size is >3 then we can replace
    // all the elements with the maxmimum
    // element, Initialize a variable
    // mx = 0, Iterate throghh the array
    // and find the maximum element
    int mx = 0;
    for (int i = 0; i < n; i++)
        mx = max(arr[i], mx);
 
    // Return n* mx
    return n * mx;
}
 
// Driver Code
int main()
{
    int arr[] = { 1, 9 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int arr2[] = { 1, 1, 1 };
    int m = sizeof(arr2) / sizeof(arr2[0]);
 
    // Function Call
    cout << find_maxsum(arr, n) << endl;
    cout << find_maxsum(arr2, m) << endl;
}


Java




import java.util.*;
 
public class Main {
 
  public static int findMaxSum(int[] arr, int n)
  {
     
    // If the size of the array is 2, the only
    // possible sums are 2 * abs(arr[0] - arr[1])
    // and arr[0] + arr[1]
    if (n == 2) {
      return Math.max(2 * Math.abs(arr[0] - arr[1]),
                      arr[0] + arr[1]);
    }
     
    // If the size of the array is 3, all possible
    // sums are 3 * (abs(arr[0] - arr[1])),
    // 3 * (abs(arr[2] - arr[1])), 3 * arr[0],
    // 3 * arr[2], and arr[0] + arr[1] + arr[2]
    else if (n == 3) {
      int[] possibleSums
        = { 3 * (Math.abs(arr[0] - arr[1])),
           3 * (Math.abs(arr[2] - arr[1])),
           3 * arr[0], 3 * arr[2],
           arr[0] + arr[1] + arr[2] };
      return Arrays.stream(possibleSums)
        .max()
        .getAsInt();
    }
    // If the size is greater than 3, replace
    // all the elements with the maximum
    // element. Initialize a variable mx = 0,
    // and find the maximum element.
    int mx = 0;
    for (int i = 0; i < n; i++) {
      mx = Math.max(arr[i], mx);
    }
    // Return n * mx
    return n * mx;
  }
 
  public static void main(String[] args)
  {
    int[] arr = { 1, 9 };
    int n = arr.length;
    int[] arr2 = { 1, 1, 1 };
    int m = arr2.length;
 
    // Function call for first array
    System.out.println(findMaxSum(arr, n));
 
    // Function call for second array
    System.out.println(findMaxSum(arr2, m));
  }
}
 
// This code is contributed by hkdass001.


Python3




#Python code for the above approach
import sys
 
def findMaxSum(arr, n):
     
    # If the size of the array is 2, the only
    # possible sums are 2 * abs(arr[0] - arr[1])
    # and arr[0] + arr[1]
    if (n == 2):
        return max(2 * abs(arr[0] - arr[1]), arr[0] + arr[1])
     
    # If the size of the array is 3, all possible
    # sums are 3 * (abs(arr[0] - arr[1])),
    # 3 * (abs(arr[2] - arr[1])), 3 * arr[0],
    # 3 * arr[2], and arr[0] + arr[1] + arr[2]
    elif (n == 3):
        possibleSums = [3 * abs(arr[0] - arr[1]), 3 * abs(arr[2] - arr[1]), 3 * arr[0], 3 * arr[2], arr[0] + arr[1] + arr[2]]
        return max(possibleSums)
     
    # If the size is greater than 3, replace
    # all the elements with the maximum
    # element. Initialize a variable mx = 0,
    # and find the maximum element.
    mx = 0
    for i in range(n):
        mx = max(arr[i], mx)
     
    # Return n * mx
    return n * mx
 
def main():
    arr = [1, 9]
    n = len(arr)
    arr2 = [1, 1, 1]
    m = len(arr2)
 
    # Function call for first array
    print(findMaxSum(arr, n))
 
    # Function call for second array
    print(findMaxSum(arr2, m))
 
if __name__ == "__main__":
    sys.exit(int(main() or 0))
 
#This code is contributed by shivamsharma215


C#




// C# code implementation for the above approach
using System;
using System.Linq;
 
public class GFG {
 
  static int findMaxSum(int[] arr, int n)
  {
 
    // If the size of the array is 2, the only possible
    // sums are 2 * abs(arr[0] - arr[1]) and arr[0] +
    // arr[1]
    if (n == 2) {
      return Math.Max(2 * Math.Abs(arr[0] - arr[1]),
                      arr[0] + arr[1]);
    }
 
    // If the size of the array is 3, all possible sums
    // are 3 * (abs(arr[0] - arr[1])), 3 * (abs(arr[2] -
    // arr[1])), 3 * arr[0], 3 * arr[2], and arr[0] +
    // arr[1] + arr[2]
    else if (n == 3) {
      int[] possibleSums
        = { 3 * (Math.Abs(arr[0] - arr[1])),
           3 * (Math.Abs(arr[2] - arr[1])),
           3 * arr[0], 3 * arr[2],
           arr[0] + arr[1] + arr[2] };
      return possibleSums.Max();
    }
    // If the size is greater than 3, replace all the
    // elements with the maximum element. Initialize a
    // variable mx = 0, and find the maximum element.
    int mx = 0;
    for (int i = 0; i < n; i++) {
      mx = Math.Max(arr[i], mx);
    }
    // Return n * mx
    return n * mx;
  }
 
  static public void Main()
  {
 
    // Code
    int[] arr = { 1, 9 };
    int n = arr.Length;
    int[] arr2 = { 1, 1, 1 };
    int m = arr2.Length;
 
    // Function call for first array
    Console.WriteLine(findMaxSum(arr, n));
 
    // Function call for second array
    Console.WriteLine(findMaxSum(arr2, m));
  }
}
 
// This code is contributed by sankar.


Javascript




// Javascript code for the above approach
 
function find_maxsum( arr, n)
{
 
    // If size of the array is 2 only
    // possible sums are
    // 2 * abs(arr[0] - arr[1]),
    // arr[0] + arr[1]
    if (n == 2)
        return Math.max(
             2 * Math.abs(arr[0] - arr[1]), Math.max(arr[0] + arr[1] ));
 
    // If the size of the arrays is 3 all
    // possible sums are
    // 3 * (abs(arr[0] - arr[1])),
    // 3 * (abs(arr[2] - arr[1])),
    // 3 * arr[0], 3 * arr[2],
    // arr[0] + arr[1] + arr[2]
    else if (n == 3)
        return Math.max( 3 * (Math.abs(arr[0] - arr[1])),
                     Math.max(3 * (Math.abs(arr[2] - arr[1])), 3 * arr[0], Math.max(3 * arr[2], arr[0] + arr[1] + arr[2] )));
 
    // If the size is >3 then we can replace
    // all the elements with the maxmimum
    // element, Initialize a variable
    // mx = 0, Iterate throghh the array
    // and find the maximum element
    let mx = 0;
    for (let i = 0; i < n; i++)
        mx = Math.max(arr[i], mx);
 
    // Return n* mx
    return n * mx;
}
 
// Driver Code
let arr = [ 1, 9 ];
let n = arr.length;
let arr2 = [ 1, 1, 1 ];
let m = arr2.length;
 
// Function Call
document.write(find_maxsum(arr, n));
document.write(find_maxsum(arr2, m));


Output

16
3

Time Complexity: O(N) where N is the size of the array.
Auxiliary Space: O(1) 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
02 Mar, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments