Friday, January 10, 2025
Google search engine
HomeData Modelling & AIFind maximum Subsequence Sum according to given conditions

Find maximum Subsequence Sum according to given conditions

Given an integer array nums and an integer K, The task is to find the maximum sum of a non-empty subsequence of the array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j – i <= K is satisfied. 

A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order. 

Examples: 

Input: nums = [10, 2, -10, 5, 20], K = 2
Output: 37
Explanation: The subsequence is [10, 2, 5, 20].

Input: nums = [-1, -2, -3], K = 1
Output: -1

Input: nums = [10, -2, -10, -5, 20], K = 2
Output: 23

Approach: 

  • The optimal solution of this problem can be achieved by using the Sliding Window Maximum and Dynamic Programming .
  • At any index i after calculating the maximum sum for i, nums[i] will now store the maximum possible sum that can be obtained from a subsequence ending at i.
  • To calculate the maximum possible sum for every index i , check what is the maximum value that can be obtained from a window of size K before it. If the maximum value is negative, use zero instead.
  • To use the values of calculated sums optimally we use a deque to store the sums along with their indexes in an increasing order of the sums . We also pop the element from the back when its index goes out of the window k of current index i.
     

CPP




// C++ program to find the maximum sum
// subsequence under given constraint
#include <bits/stdc++.h>
using namespace std;
 
// Function return the maximum sum
int ConstrainedSubsetSum(vector<int>& nums,
                         int k)
{
    deque<pair<int, int> > d;
     
    // Iterating the given array
    for (int i = 0; i < nums.size(); i++)
    {
       
        // Check if deque is empty
        nums[i] += d.size()
            ? max(d.back().first, 0) : 0;
         
        while (d.size() &&
               d.front().first < nums[i])
            d.pop_front();
         
        d.push_front({ nums[i], i });
         
        if (d.back().second == i - k)
            d.pop_back();
    }
 
    int ans = nums[0];
     
    for (auto x : nums)
        ans = max(ans, x);
 
    return ans;
}
 
// Driver code
int main()
{
    vector<int> nums = { 10, -2, -10,
                        -5, 20 };
    int K = 2;
     
    // Function call
    cout << ConstrainedSubsetSum(nums, K)
        << endl;
    return 0;
}


Java




// Java program to find the maximum sum
// subsequence under given constraint
 
import java.io.*;
import java.util.*;
 
class GFG {
 
    // pair class
    static class pair {
        int first, second;
        public pair(int first, int second)
        {
            this.first = first;
            this.second = second;
        }
    }
 
    // Function to return the maximum sum
    static int ConstrainedSubsetSum(int[] nums, int k)
    {
        Deque<pair> d = new LinkedList<>();
 
        // Iterating the given array
        for (int i = 0; i < nums.length; i++) {
 
            // Check if deque is empty
            nums[i]
                += (d.size() != 0
                        ? Math.max(d.peekLast().first, 0)
                        : 0);
            while (d.size() != 0
                   && d.peekFirst().first < nums[i]) {
                d.removeFirst();
            }
            d.offerFirst(new pair(nums[i], i));
            if (d.peekLast().second == i - k) {
                d.removeLast();
            }
        }
        int ans = nums[0];
        for (int i = 0; i < nums.length; i++) {
            ans = Math.max(ans, nums[i]);
        }
        return ans;
    }
 
      // Driver code
    public static void main(String[] args)
    {
        int[] nums = { 10, -2, -10, -5, 20 };
        int K = 2;
 
        // Function call
        System.out.print(ConstrainedSubsetSum(nums, K));
    }
}
 
// This code is contributed by lokeshmvs21.


Python3




# Python code
from collections import deque
 
def ConstrainedSubsetSum(nums, k):
    d = deque()
    # Iterating the given array
    for i in range(len(nums)):
        nums[i] += d[-1][0] if d and d[-1][0] > 0 else 0
        while d and d[0][0] < nums[i]:
            d.popleft()
        d.appendleft((nums[i], i))
        if d and d[-1][1] == i - k:
            d.pop()
    ans=nums[0]
    for i in range(1,len(nums)):
      ans=max(ans,nums[i])
    return ans
 
# Driver code
nums = [10, -2, -10, -5, 20]
K = 2
print(ConstrainedSubsetSum(nums, K))
 
# This code is contributed by Utkarsh


C#




using System;
using System.Collections.Generic;
 
class GFG {
    // pair class
    class Pair {
        public int First { get; set; }
        public int Second { get; set; }
        public Pair(int first, int second) {
            First = first;
            Second = second;
        }
    }
 
    // Function to return the maximum sum
    static int ConstrainedSubsetSum(int[] nums, int k) {
        LinkedList<Pair> d = new LinkedList<Pair>();
 
        // Iterating the given array
        for (int i = 0; i < nums.Length; i++) {
 
            // Check if deque is empty
            nums[i] += (d.Count != 0 ? Math.Max(d.Last.Value.First, 0) : 0);
            while (d.Count != 0 && d.First.Value.First < nums[i]) {
                d.RemoveFirst();
            }
            d.AddFirst(new Pair(nums[i], i));
            if (d.Last.Value.Second == i - k) {
                d.RemoveLast();
            }
        }
        int ans = nums[0];
        foreach (Pair pair in d) {
            ans = Math.Max(ans, pair.First);
        }
        return ans;
    }
 
    // Driver code
    public static void Main(string[] args) {
        int[] nums = { 10, -2, -10, -5, 20 };
        int k = 2;
 
        // Function call
        Console.Write(ConstrainedSubsetSum(nums, k));
    }
}


Javascript




// JS program to find the maximum sum
// subsequence under given constralet
 
// Function return the maximum sum
function ConstrainedSubsetSum(nums, k)
{
    let d = [];
     
    // Iterating the given array
    for (let i = 0; i < nums.length; i++)
    {
       
        // Check if deque is empty
        nums[i] += d.length
            ? Math.max(d[d.length - 1][0], 0) : 0;
 
         
        while (d.length &&
               d[0][0] < nums[i])
            d.shift();
 
         
        d.unshift([nums[i], i]);
         
        if (d[d.length - 1][1] === i - k)
            d.pop();
    }
 
    let ans = nums[0];
     
    for (let x of nums)
        ans = Math.max(ans, x);
 
    return ans;
}
 
// Driver code
let nums = [ 10, -2, -10, -5, 20 ];
let K = 2;
 
// Function call
console.log(ConstrainedSubsetSum(nums, K));


Output

23



Time Complexity: O(N) 
Auxiliary Space: O(K)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments