Thursday, January 9, 2025
Google search engine
HomeData Modelling & AIFind maximum score by performing given operations

Find maximum score by performing given operations

Given two arrays a[] and b[][2] with both having size N. N operations have to be performed, and initially counter will be 0. Additionally, there is a M bonus score for a hitting streak of b[i][0] and the bonus score received will be b[i][1], the task is to find the maximum score by performing either of the below operations optimally for all i from 1 to N.

  • Operation 1: increases the counter’s value by 1 and receives a[i] score
  • Operation 2: resets the counter’s value to 0, without receiving any score.

Examples:

Input: a[] = {2, 7, 1, 8, 2, 8}, b[][2] = {{2, 10}, {3, 1}, {5, 5}}
Output: 48
Explanation: 

  • For i = 1, Change the counter’s value from 0 to 1 and receive a 2 score.
  • For i = 2, Change the counter’s value from 1 to 2 and receive a 7 score and get 10 scores as a streak bonus as well.
  • For i = 3, Change the counter’s value from 2 to 0.
  • For i = 4, Change the counter’s value from 0 to 1 and receive 8 scores.
  • For i = 5, Change the counter’s value from 1 to 2 and receive 2 scores and get a 10 score as a streak bonus.
  • For i = 6, Change the counter’s value from 2 to 3 and receive 8 scores. and get 1 score as a streak bonus.

Total score : 2 + 7 + 10 + 8 + 2 +10 + 8 +1 = 48.

Input:  a[] = {1000000000, 1000000000, 1000000000}, b[][2] = {{1, 1000000000}, {3, 1000000000}}
Output: 5000000000

Naive approach: The problem can be solved based on The basis of the following idea:

Basic way to solve this problem is to generate all 2N combinations by recursive brute force.

Time Complexity: O(2N)
Auxiliary Space: O(1)

Efficient Approach:  The above approach can be optimized based on the following idea:

Dynamic programming along with hashing can be used to solve to this problem.

  • dp[i][j] represents maximum score till i’th operation with current counter j.
  • recurrence relation: dp[i][j] = max(dp[i  – 1][j + 1] + a[i] + hash[j + 1], dp[i – 1][0])

It can be observed that there are N * N states but the recursive function is called exponential times. That means that some states are called repeatedly. So the idea is to store the value of states. This can be done using recursive structure intact and just store the value in a HashMap and whenever the function is called, return the value store without computing .

Follow the steps below to solve the problem:

  • Creating a hashmap array for mapping values of b[i][0] to b[i][1] named hash[].
  • Create a recursive function that takes two parameters i representing i’th operation and j representing counter at i’th operation.
  • Call the recursive function for both increasing the current counter by 1 and resetting the counter.
  • Check the base case if all N operations are over then return 0.
  • Create a 2d array of dp[5001][5001] initially filled with -1.
  • If the answer for a particular state is computed then save it in dp[i][j].
  • If the answer for a particular state is already computed then just return dp[i][j].

Below is the implementation of the above approach.

C++




// C++ code to implement the approach
#include <bits/stdc++.h>
using namespace std;
 
// To avoid integer overflow
#define int long long
 
// dp table initialized with - 1
int dp[5001][5001];
 
// Recursive function to count maximum score
// by performing following operations
int recur(int i, int j, int a[], int hash[], int N)
{
 
    // Base case
    if (i == N) {
        return 0;
    }
 
    // If answer for current state is already
    // calculated then just return dp[i][j]
    if (dp[i][j] != -1)
        return dp[i][j];
 
    // Calling recursive function for
    // performing operation 1
    int ans = recur(i + 1, j + 1, a, hash, N) + a[i]
              + hash[j + 1];
 
    // Calling recursive function for
    // performing operation 2
    ans = max(ans, recur(i + 1, 0, a, hash, N) + 0LL);
 
    // Save and return dp value
    return dp[i][j] = ans;
}
 
// Function to count maximum score
// by performing following operations
void findMaximumScore(int a[], int b[][2], int N, int M)
{
 
    // Filling dp table with -1
    memset(dp, -1, sizeof(dp));
 
    // Creating Hash table
    int hash[N + 1] = { 0 };
 
    // Mapping hash table with values
    for (int i = 0; i < M; i++) {
        hash[b[i][0]] += b[i][1];
    }
 
    cout << recur(0, 0, a, hash, N) << endl;
}
 
// Driver Code
int32_t main()
{
 
    // Input 1
    int a[] = { 2, 7, 1, 8, 2, 8 },
        b[][2] = { { 2, 10 }, { 3, 1 }, { 5, 5 } };
    int N = sizeof(a) / sizeof(a[0]);
    int M = sizeof(b) / sizeof(b[0]);
 
    // Function Call
    findMaximumScore(a, b, N, M);
 
    // Input 2
    int a1[] = { 1000000000, 1000000000, 1000000000 },
        b1[][2] = { { 1, 1000000000 }, { 3, 1000000000 } };
    int N1 = sizeof(a1) / sizeof(a1[0]);
    int M1 = sizeof(b1) / sizeof(b1[0]);
 
    // Function Call
    findMaximumScore(a1, b1, N1, M1);
    return 0;
}


Java




// Java code for the above approach
import java.util.Arrays;
 
class Main
{
   
    // To avoid integer overflow
    static long MAX = 1000000007;
 
    // dp table initialized with - 1
    static long[][] dp = new long[5001][5001];
 
    // Recursive function to count maximum score
    // by performing following operations
    static long recur(int i, int j, int[] a, int[] hash, int N)
    {
       
        // Base case
        if (i == N) {
            return 0;
        }
 
        // If answer for current state is already
        // calculated then just return dp[i][j]
        if (dp[i][j] != -1) {
            return dp[i][j];
        }
 
        // Calling recursive function for
        // performing operation 1
        long ans = recur(i + 1, j + 1, a, hash, N) + a[i]
                + hash[j + 1];
 
        // Calling recursive function for
        // performing operation 2
        ans = Math.max(ans, recur(i + 1, 0, a, hash, N) + 0);
 
        // Save and return dp value
        return dp[i][j] = ans;
    }
 
    // Function to count maximum score
    // by performing following operations
    static void findMaximumScore(int[] a, int[][] b, int N, int M)
    {
       
        // Filling dp table with -1
        for (long[] row : dp) {
            Arrays.fill(row, -1);
        }
 
        // Creating Hash table
        int[] hash = new int[N + 1];
 
        // Mapping hash table with values
        for (int i = 0; i < M; i++) {
            hash[b[i][0]] += b[i][1];
        }
 
        System.out.println(recur(0, 0, a, hash, N));
    }
 
    // Driver Code
    public static void main(String[] args) {
        // Input 1
        int[] a = { 2, 7, 1, 8, 2, 8 };
        int[][] b = { { 2, 10 }, { 3, 1 }, { 5, 5 } };
        int N = a.length;
        int M = b.length;
 
        // Function Call
        findMaximumScore(a, b, N, M);
 
        // Input 2
        int[] a1 = { 1000000000, 1000000000, 1000000000 };
        int[][] b1 = { { 1, 1000000000 }, { 3, 1000000000 } };
        int N1 = a1.length;
        int M1 = b1.length;
 
        // Function Call
        findMaximumScore(a1, b1, N1, M1);
    }
}
 
// This code is contributed by Potta Lokesh


Python3




#Python code to implement the approach
 
# dp table initialized with - 1
dp=[[-1 for i in range(5001)] for j in range(5001)]
 
# Recursive function to count maximum score
# by performing following operations
def recur(i,j,a,hash,N):
    # Base case
    if(i==N):
        return 0
         
    # If answer for current state is already
    # calculated then just return dp[i][j]
    if(dp[i][j]!=-1):
        return dp[i][j]
         
    # Calling recursive function for
    # performing operation 1
    ans=recur(i+1,j+1,a,hash,N)+a[i]+hash[j+1]
     
    # Calling recursive function for
    # performing operation 2
    ans=max(ans,recur(i+1,0,a,hash,N))
     
    # Save and return dp value
    dp[i][j]=ans
    return dp[i][j]
 
# Function to count maximum score
# by performing following operations
def findMaximumScore(a,b,N,M):
     
    # Filling dp table with -1
    for i in range(len(dp)):
        for j in range(len(dp[0])):
            dp[i][j]=-1
     
    # Creating Hash table
    hash=[0]*(N+1)
     
    # Mapping hash table with values
    for i in range(M):
        hash[b[i][0]]+=b[i][1]
     
    print(recur(0,0,a,hash,N))
     
# Driver Code
 
# Input 1
a=[2, 7, 1, 8, 2, 8]
b=[[2,10],[3,1],[5,5]]
N=len(a)
M=len(b)
 
# Function call
findMaximumScore(a,b,N,M)
 
# Input 2
a1=[1000000000, 1000000000, 1000000000]
b1=[[1,1000000000],[3,1000000000]]
N1=len(a1)
M1=len(b1)
 
# Function call
findMaximumScore(a1,b1,N1,M1)
 
# This code is contributed by Pushpesh Raj.


C#




using System;
using System.Linq;
 
class GFG
{
   
  // To avoid integer overflow
  static long MAX = 1000000007;
 
  // dp table initialized with - 1
  static long[, ] dp = new long[5001, 5001];
 
  // Recursive function to count maximum score
  // by performing following operations
  static long recur(int i, int j, int[] a, int[] hash,
                    int N)
  {
 
    // Base case
    if (i == N) {
      return 0;
    }
 
    // If answer for current state is already
    // calculated then just return dp[i][j]
    if (dp[i, j] != -1) {
      return dp[i, j];
    }
 
    // Calling recursive function for
    // performing operation 1
    long ans = recur(i + 1, j + 1, a, hash, N) + a[i]
      + hash[j + 1];
 
    // Calling recursive function for
    // performing operation 2
    ans = Math.Max(ans,
                   recur(i + 1, 0, a, hash, N) + 0);
 
    // Save and return dp value
    return dp[i, j] = ans;
  }
 
  // Function to count maximum score
  // by performing following operations
  static void findMaximumScore(int[] a, int[, ] b, int N,
                               int M)
  {
 
    // Filling dp table with -1
    for (int i = 0; i < 5001; i++) {
      for (int j = 0; j < 5001; j++) {
        dp[i, j] = -1;
      }
    }
 
    // Creating Hash table
    int[] hash = new int[N + 1];
 
    // Mapping hash table with values
    for (int i = 0; i < M; i++) {
      hash[b[i, 0]] += b[i, 1];
    }
 
    Console.WriteLine(recur(0, 0, a, hash, N));
  }
 
  // Driver Code
  public static void Main(string[] args)
  {
    // Input 1
    int[] a = { 2, 7, 1, 8, 2, 8 };
    int[, ] b = { { 2, 10 }, { 3, 1 }, { 5, 5 } };
    int N = a.Length;
    int M = b.GetLength(0);
 
    // Function Call
    findMaximumScore(a, b, N, M);
 
    // Input 2
    int[] a1 = { 1000000000, 1000000000, 1000000000 };
    int[, ] b1
      = { { 1, 1000000000 }, { 3, 1000000000 } };
    int N1 = a1.Length;
    int M1 = b1.GetLength(0);
 
    // Function Call
    findMaximumScore(a1, b1, N1, M1);
  }
}
 
// This code is contributed by ik_9


Javascript




// Javascript code to implement the approach
 
// dp table initialized with - 1
let dp=new Array(5001);
for(let i=0; i<5001; i++)
    dp[i]=new Array(5001);
 
// Recursive function to count maximum score
// by performing following operations
function recur(i, j, a, hash, N)
{
 
    // Base case
    if (i == N) {
        return 0;
    }
 
    // If answer for current state is already
    // calculated then just return dp[i][j]
    if (dp[i][j] != -1)
        return dp[i][j];
 
    // Calling recursive function for
    // performing operation 1
    let ans = recur(i + 1, j + 1, a, hash, N) + a[i]
              + hash[j + 1];
 
    // Calling recursive function for
    // performing operation 2
    ans = Math.max(ans, recur(i + 1, 0, a, hash, N) + 0);
 
    // Save and return dp value
    return dp[i][j] = ans;
}
 
// Function to count maximum score
// by performing following operations
function findMaximumScore(a, b, N, M)
{
 
    // Filling dp table with -1
    for(let i=0; i<5001; i++)
        for(let j=0; j<5001; j++)
            dp[i][j]=-1;
             
    // Creating Hash table
    let hash = new Array(N+1).fill(0);
 
    // Mapping hash table with values
    for (let i = 0; i < M; i++) {
        hash[b[i][0]] += b[i][1];
    }
 
    document.write(recur(0, 0, a, hash, N))
}
 
// Driver Code
    // Input 1
    let a = [ 2, 7, 1, 8, 2, 8 ],
        b = [[ 2, 10 ], [ 3, 1 ], [ 5, 5 ]];
    let N = a.length;
    let M = b.length;
 
    // Function Call
    findMaximumScore(a, b, N, M);
     
    document.write("<br>");
 
    // Input 2
    let a1 = [ 1000000000, 1000000000, 1000000000 ],
        b1 = [ [ 1, 1000000000 ], [ 3, 1000000000 ] ];
    let N1 = a1.length;
    let M1 = b1.length;
 
    // Function Call
    findMaximumScore(a1, b1, N1, M1);


Output

48
5000000000














Time Complexity: O(N2)
Auxiliary Space: O(N2)

Efficient approach : Using DP Tabulation method ( Iterative approach )

The approach to solve this problem is same but DP tabulation(bottom-up) method is better then Dp + memoization(top-down) because memoization method needs extra stack space of recursion calls.

Implementation :
 

C++




#include <bits/stdc++.h>
using namespace std;
 
// To avoid integer overflow
#define int long long
 
// dp table
int dp[5001][5001];
 
// Function to count maximum score
// by performing following operations
void findMaximumScore(int a[], int b[][2], int N, int M)
{
    // Creating Hash table
    int hash[N + 1] = { 0 };
 
    // Mapping hash table with values
    for (int i = 0; i < M; i++) {
        hash[b[i][0]] += b[i][1];
    }
 
    // Base case initialization
    for (int i = 0; i <= N; i++) {
        dp[N][i] = 0;
    }
 
    // Tabulation
    for (int i = N - 1; i >= 0; i--) {
        for (int j = 0; j <= i; j++) {
            // Operation 1
            int ans = dp[i + 1][j + 1] + a[i] + hash[j + 1];
            // Operation 2
            ans = max(ans, dp[i + 1][0]);
            dp[i][j] = ans;
        }
    }
 
    cout << dp[0][0] << endl;
}
 
// Driver Code
int32_t main()
{
 
    // Input 1
    int a[] = { 2, 7, 1, 8, 2, 8 },
        b[][2] = { { 2, 10 }, { 3, 1 }, { 5, 5 } };
    int N = sizeof(a) / sizeof(a[0]);
    int M = sizeof(b) / sizeof(b[0]);
 
    // Function Call
    findMaximumScore(a, b, N, M);
 
    // Input 2
    int a1[] = { 1000000000, 1000000000, 1000000000 },
        b1[][2] = { { 1, 1000000000 }, { 3, 1000000000 } };
    int N1 = sizeof(a1) / sizeof(a1[0]);
    int M1 = sizeof(b1) / sizeof(b1[0]);
 
    // Function Call
    findMaximumScore(a1, b1, N1, M1);
    return 0;
}


Java




import java.util.Arrays;
 
public class MaximumScore {
 
    // Function to count maximum score
    static void findMaximumScore(int[] a, int[][] b, int N, int M) {
        // To avoid integer overflow
        long[][] dp = new long[N + 1][N + 1];
 
        // Creating Hash table
        long[] hash = new long[N + 1];
 
        // Mapping hash table with values
        for (int i = 0; i < M; i++) {
            hash[b[i][0]] += b[i][1];
        }
 
        // Base case initialization
        for (int i = 0; i <= N; i++) {
            dp[N][i] = 0;
        }
 
        // Tabulation
        for (int i = N - 1; i >= 0; i--) {
            for (int j = 0; j <= i; j++) {
                // Operation 1
                long ans = dp[i + 1][j + 1] + a[i] + hash[j + 1];
                // Operation 2
                ans = Math.max(ans, dp[i + 1][0]);
                dp[i][j] = ans;
            }
        }
 
        System.out.println(dp[0][0]);
    }
 
    public static void main(String[] args) {
        // Input 1
        int[] a = { 2, 7, 1, 8, 2, 8 };
        int[][] b = { { 2, 10 }, { 3, 1 }, { 5, 5 } };
        int N = a.length;
        int M = b.length;
 
        // Function Call
        findMaximumScore(a, b, N, M);
 
        // Input 2
        int[] a1 = { 1000000000, 1000000000, 1000000000 };
        int[][] b1 = { { 1, 1000000000 }, { 3, 1000000000 } };
        int N1 = a1.length;
        int M1 = b1.length;
 
        // Function Call
        findMaximumScore(a1, b1, N1, M1);
    }
}


Python




import numpy as np
 
# Function to count maximum score
# by performing following operations
def findMaximumScore(a, b, N, M):
      # Creating Hash table
    hash = np.zeros(N + 1)
     
    # Mapping hash table with values
    for i in range(M):
        hash[b[i][0]] += b[i][1]
     
    # Base case initialization
    dp = np.zeros((N + 1, N + 1))
     
    # Tabulation
    for i in range(N - 1, -1, -1):
        for j in range(i + 1):
            ans = dp[i + 1][j + 1] + a[i] + hash[j + 1]
            ans = max(ans, dp[i + 1][0])
            dp[i][j] = ans
     
    print(dp[0][0])
 
# Input 1
a = [2, 7, 1, 8, 2, 8]
b = [[2, 10], [3, 1], [5, 5]]
N = len(a)
M = len(b)
 
findMaximumScore(a, b, N, M)
 
# Input 2
a1 = [1000000000, 1000000000, 1000000000]
b1 = [[1, 1000000000], [3, 1000000000]]
N1 = len(a1)
M1 = len(b1)
 
findMaximumScore(a1, b1, N1, M1)


C#




using System;
 
public class GFG
{
    public static void FindMaximumScore(int[] a, int[][] b, int N, int M)
    {
        // Creating Hash table
        long[] hash = new long[N + 1];
 
        // Mapping hash table with values
        for (int i = 0; i < M; i++)
        {
            hash[b[i][0]] += b[i][1];
        }
 
        // dp table
        long[,] dp = new long[5001, 5001];
 
        // Base case initialization
        for (int i = 0; i <= N; i++)
        {
            dp[N, i] = 0;
        }
 
        // Tabulation
        for (int i = N - 1; i >= 0; i--)
        {
            for (int j = 0; j <= i; j++)
            {
                // Operation 1
                long ans = dp[i + 1, j + 1] + a[i] + hash[j + 1];
                // Operation 2
                ans = Math.Max(ans, dp[i + 1, 0]);
                dp[i, j] = ans;
            }
        }
 
        Console.WriteLine(dp[0, 0]);
    }
 
    public static void Main()
    {
        // Input 1
        int[] a = { 2, 7, 1, 8, 2, 8 };
        int[][] b = { new int[] { 2, 10 }, new int[] { 3, 1 }, new int[] { 5, 5 } };
        int N = a.Length;
        int M = b.Length;
 
        // Function Call
        FindMaximumScore(a, b, N, M);
 
        // Input 2
        int[] a1 = { 1000000000, 1000000000, 1000000000 };
        int[][] b1 = { new int[] { 1, 1000000000 }, new int[] { 3, 1000000000 } };
        int N1 = a1.Length;
        int M1 = b1.Length;
 
        // Function Call
        FindMaximumScore(a1, b1, N1, M1);
    }
}


Javascript




// Function to count maximum score
// by performing following operations
function findMaximumScore(a, b, N, M) {
    // Creating Hash table
    var hash = new Array(N + 1).fill(0);
     
    // Mapping hash table with values
    for (var i = 0; i < M; i++) {
        hash[b[i][0]] += b[i][1];
    }
     
    // Base case initialization
    var dp = new Array(N + 1).fill(0).map(() => new Array(N + 1).fill(0));
     
    // Tabulation
    for (var i = N - 1; i >= 0; i--) {
        for (var j = 0; j <= i; j++) {
            var ans = dp[i + 1][j + 1] + a[i] + hash[j + 1];
            ans = Math.max(ans, dp[i + 1][0]);
            dp[i][j] = ans;
        }
    }
    console.log(dp[0][0]);
}
 
// Input 1
var a = [2, 7, 1, 8, 2, 8];
var b = [[2, 10], [3, 1], [5, 5]];
var N = a.length;
var M = b.length;
findMaximumScore(a, b, N, M);
 
 
// Input 2
var a1 = [1000000000, 1000000000, 1000000000];
var b1 = [[1, 1000000000], [3, 1000000000]];
var N1 = a1.length;
var M1 = b1.length;
findMaximumScore(a1, b1, N1, M1);


Output

48
5000000000














Time Complexity: O(N^2)
Auxiliary Space: O(N^2)

Efficient approach : Space optimization

In previous approach the dp[i][j] is depend upon the current and previous row of 2D matrix. So to optimize space we use two vectors curr and next that keep track of current and next row of DP.

Implementation :

C++




// C++ code for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// To avoid integer overflow
#define int long long
 
// Function to count maximum score
// by performing following operations
void findMaximumScore(int a[], int b[][2], int N, int M)
{
    // Creating Hash table
    int hash[N + 1] = { 0 };
 
    // to store the values of next row of DP
    vector<int> next(N + 1, 0);
 
    // Mapping hash table with values
    for (int i = 0; i < M; i++) {
        hash[b[i][0]] += b[i][1];
    }
 
    // iterating over DP to get the current
    // value from previous computations
    for (int i = N - 1; i >= 0; i--) {
 
        vector<int> curr(N + 1);
        for (int j = 0; j <= i; j++) {
            // Operation 1
            int ans = next[j + 1] + a[i] + hash[j + 1];
            // Operation 2
            ans = max(ans, next[0]);
            curr[j] = ans;
        }
 
        // assigning values to iterate further
        next = curr;
    }
 
    // print final answer
    cout << next[0] << endl;
}
 
// Driver Code
int32_t main()
{
 
    // Input 1
    int a[] = { 2, 7, 1, 8, 2, 8 },
        b[][2] = { { 2, 10 }, { 3, 1 }, { 5, 5 } };
    int N = sizeof(a) / sizeof(a[0]);
    int M = sizeof(b) / sizeof(b[0]);
 
    // Function Call
    findMaximumScore(a, b, N, M);
 
    // Input 2
    int a1[] = { 1000000000, 1000000000, 1000000000 },
        b1[][2] = { { 1, 1000000000 }, { 3, 1000000000 } };
    int N1 = sizeof(a1) / sizeof(a1[0]);
    int M1 = sizeof(b1) / sizeof(b1[0]);
 
    // Function Call
    findMaximumScore(a1, b1, N1, M1);
    return 0;
}


Java




import java.util.Arrays;
 
public class Main {
    // Function to count maximum score
    // by performing following operations
    static void findMaximumScore(long a[], long b[][], int N, int M) {
        // Creating Hash table
        long hash[] = new long[N + 1];
 
        // to store the values of the next row of DP
        long[] next = new long[N + 1];
 
        // Mapping hash table with values
        for (int i = 0; i < M; i++) {
            hash[(int)b[i][0]] += b[i][1];
        }
 
        // iterating over DP to get the current
        // value from previous computations
        for (int i = N - 1; i >= 0; i--) {
            long[] curr = new long[N + 1];
            for (int j = 0; j <= i; j++) {
                // Operation 1
                long ans = next[j + 1] + a[i] + hash[j + 1];
                // Operation 2
                ans = Math.max(ans, next[0]);
                curr[j] = ans;
            }
 
            // assigning values to iterate further
            next = Arrays.copyOf(curr, curr.length);
        }
 
        // print final answer
        System.out.println(next[0]);
    }
 
    // Driver Code
    public static void main(String[] args) {
        // Input 1
        long a[] = { 2, 7, 1, 8, 2, 8 };
        long b[][] = { { 2, 10 }, { 3, 1 }, { 5, 5 } };
        int N = a.length;
        int M = b.length;
 
        // Function Call
        findMaximumScore(a, b, N, M);
 
        // Input 2
        long a1[] = { 1000000000, 1000000000, 1000000000 };
        long b1[][] = { { 1, 1000000000 }, { 3, 1000000000 } };
        int N1 = a1.length;
        int M1 = b1.length;
 
        // Function Call
        findMaximumScore(a1, b1, N1, M1);
    }
}


Python3




# Python code for the above approach
 
# Function to count maximum score
# by performing following operations
def findMaximumScore(a, b, N, M):
    # Creating Hash table
    hash = [0] * (N + 1)
 
    # to store the values of the next row of DP
    next_row = [0] * (N + 1)
 
    # Mapping hash table with values
    for i in range(M):
        hash[b[i][0]] += b[i][1]
 
    # iterating over DP to get the current
    # value from previous computations
    for i in range(N - 1, -1, -1):
        curr = [0] * (N + 1)
        for j in range(i + 1):
            # Operation 1
            ans = next_row[j + 1] + a[i] + hash[j + 1]
            # Operation 2
            ans = max(ans, next_row[0])
            curr[j] = ans
 
        # assigning values to iterate further
        next_row = curr
 
    # print final answer
    print(next_row[0])
 
 
# Driver Code
# Input 1
a = [2, 7, 1, 8, 2, 8]
b = [[2, 10], [3, 1], [5, 5]]
N = len(a)
M = len(b)
 
# Function Call
findMaximumScore(a, b, N, M)
 
# Input 2
a1 = [1000000000, 1000000000, 1000000000]
b1 = [[1, 1000000000], [3, 1000000000]]
N1 = len(a1)
M1 = len(b1)
 
# Function Call
findMaximumScore(a1, b1, N1, M1)
 
# This code is contributed by Vaibhav Nandan


C#




using System;
 
public class GFG {
    // Function to count maximum score
    // by performing the following operations
    public static void
    FindMaximumScore(long[] a, long[][] b, int N, int M)
    {
        // Creating a hash table
        long[] hash = new long[N + 1];
 
        // To store the values of the next row of DP
        long[] next = new long[N + 1];
 
        // Mapping hash table with values
        for (int i = 0; i < M; i++) {
            hash[b[i][0]] += b[i][1];
        }
 
        // Iterating over DP to get the current
        // value from previous computations
        for (int i = N - 1; i >= 0; i--) {
            long[] curr = new long[N + 1];
            for (int j = 0; j <= i; j++) {
                // Operation 1
                long ans = next[j + 1] + a[i] + hash[j + 1];
                // Operation 2
                ans = Math.Max(ans, next[0]);
                curr[j] = ans;
            }
 
            // Assigning values to iterate further
            next = curr;
        }
 
        // Print the final answer
        Console.WriteLine(next[0]);
    }
 
    // Driver Code
    public static void Main()
    {
        // Input 1
        long[] a = { 2, 7, 1, 8, 2, 8 };
        long[][] b
            = { new long[] { 2, 10 }, new long[] { 3, 1 },
                new long[] { 5, 5 } };
        int N = a.Length;
        int M = b.Length;
 
        // Function Call
        FindMaximumScore(a, b, N, M);
 
        // Input 2
        long[] a1 = { 1000000000, 1000000000, 1000000000 };
        long[][] b1 = { new long[] { 1, 1000000000 },
                        new long[] { 3, 1000000000 } };
        int N1 = a1.Length;
        int M1 = b1.Length;
 
        // Function Call
        FindMaximumScore(a1, b1, N1, M1);
    }
}


Javascript




// JS code for the above approach
 
// Function to count maximum score
// by performing following operations
function findMaximumScore(a, b, N, M)
{
    // Creating Hash table
    let hash = new Array(N + 1).fill(0);
 
    // to store the values of next row of DP
    let next = new Array(N + 1).fill(0);
 
    // Mapping hash table with values
    for (let i = 0; i < M; i++) {
        hash[b[i][0]] += b[i][1];
    }
 
    // iterating over DP to get the current
    // value from previous computations
    for (let i = N - 1; i >= 0; i--) {
 
        let curr = new Array(N + 1);
        for (let j = 0; j <= i; j++) {
            // Operation 1
            let ans = next[j + 1] + a[i] + hash[j + 1];
            // Operation 2
            ans = Math.max(ans, next[0]);
            curr[j] = ans;
        }
 
        // assigning values to iterate further
        next = curr;
    }
 
    // print final answer
    console.log(next[0]);
}
 
// Driver Code
// Input 1
let a = [ 2, 7, 1, 8, 2, 8 ];
let b = [ [ 2, 10 ], [ 3, 1 ], [ 5, 5 ] ];
let N = a.length;
let M = b.length;
 
// Function Call
findMaximumScore(a, b, N, M);
 
// Input 2
let a1 = [ 1000000000, 1000000000, 1000000000 ];
let b1 = [ [ 1, 1000000000 ], [ 3, 1000000000 ] ];
let N1 = a1.length;
let M1 = b1.length;
 
// Function Call
findMaximumScore(a1, b1, N1, M1);


Output

48
5000000000














Time Complexity: O(N^2)
Auxiliary Space: O(N)

Related Articles:

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
09 Nov, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments