Given an integer N > 0, the task is to find the maximum product of digits among numbers less than or equal to N.
Examples:
Input: N = 390
Output: 216
Maximum possible product is given by the number 389
3 * 8 * 9 = 216Input: N = 432
Output: 243
Approach: This problem can also be solved using the method described in this article taking lower limit as 1 and upper limit as N. Another method to solve this problem is by using recursion. The conditions for recursion are as follows:
- If N = 0 then return 1.
- If N < 10 then return N.
- Otherwise, return max(maxProd(N / 10) * (N % 10), maxProd((N / 10) – 1) * 9
At each step of recursion, either the last digit or 9 is taken to maximize the product of digit.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function that returns the maximum product of // digits among numbers less than or equal to N int maxProd( int N) { if (N == 0) return 1; if (N < 10) return N; return max(maxProd(N / 10) * (N % 10), maxProd(N / 10 - 1) * 9); } // Driver code int main() { int N = 390; cout << maxProd(N); return 0; } |
Java
// Java implementation of the approach import java.io.*; class GFG { // Function that returns the maximum product of // digits among numbers less than or equal to N static int maxProd( int N) { if (N == 0 ) return 1 ; if (N < 10 ) return N; return Math.max(maxProd(N / 10 ) * (N % 10 ), maxProd(N / 10 - 1 ) * 9 ); } // Driver code public static void main (String[] args) { int N = 390 ; System.out.println (maxProd(N)); } } // This code is contributed by ajit. |
Python3
# Python3 implementation of the approach # Function that returns the maximum product of # digits among numbers less than or equal to N def maxProd(N): if (N = = 0 ): return 1 if (N < 10 ): return N return max (maxProd(N / / 10 ) * (N % 10 ), maxProd(N / / 10 - 1 ) * 9 ) # Driver code N = 390 print (maxProd(N)) # This code is contributed by mohit kumar |
C#
// C# implementation of the approach using System; class GFG { // Function that returns the maximum product of // digits among numbers less than or equal to N static int maxProd( int N) { if (N == 0) return 1; if (N < 10) return N; return Math.Max(maxProd(N / 10) * (N % 10), maxProd(N / 10 - 1) * 9); } // Driver code static public void Main () { int N = 390; Console.WriteLine(maxProd(N)); } } // This code is contributed by Tushil.. |
PHP
<?php // PHP implementation of the approach // Function that returns the maximum product of // digits among numbers less than or equal to N function maxProd( $N ) { if ( $N == 0) return 1; if ( $N < 10) return $N ; return max(maxProd((int)( $N / 10)) * ( $N % 10), maxProd((int)( $N / 10) - 1) * 9); } // Driver code $N = 390; echo maxProd( $N ); // This code is contributed by Akanksha Rai ?> |
Javascript
<script> // Javascript implementation of the approach // Function that returns the maximum product of // digits among numbers less than or equal to N function maxProd(N) { if (N == 0) return 1; if (N < 10) return N; return Math.max(maxProd(parseInt(N / 10)) * (N % 10), maxProd(parseInt(N / 10) - 1) * 9); } // Driver code let N = 390; document.write(maxProd(N)); // This code is contributed // by bobby </script> |
216
Time complexity: O(logN)
Auxiliary space: O(logN) for recursive stack space.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!