Friday, January 10, 2025
Google search engine
HomeData Modelling & AIFind maximum possible moves to achieve a target integer using Squares

Find maximum possible moves to achieve a target integer using Squares

Given an integer X, and A, B having value initially 0, the task is to find the maximum number of possible moves we can make to make A equal to X such that in each move we can choose any positive number whose square is greater than the current value of B and update A to that particular number chosen and add the square of the number to B.

Examples:

Input: X = 5
Output: 4
Explanation: The possible sequence of values of X can be: 0 -> 1 -> 2 -> 3 -> 5, Which takes 4 moves. The moves are as follows:

  • A = 0, B = 0
    • First Move: Let take positive integer 1, because 1*1 is greater than current value of B (B = 0). So, update A as 1 and B = 0 + (1*1) = 1.
  • X = 1, Y = 1
    • Second Move: Let take positive integer 2, because 2*2 is greater than current value of B (B = 1). So, update A as 2 and B = 1 + (2*2) = 5.
  • X = 2, Y = 5
    • Third Move: Let take positive integer 3, because 3*3 is greater than current value of B (B = 5). So, update A as 3 and B = 5 + (3*3) = 14.
  • X = 3, Y = 14
    • Fourth Move: Let take positive integer 5, because 5*5 is greater than current value of B (B = 14). So, update A as 5 and B = 14 + (5*5) = 39.
  • X = 5, Y = 39

Now, We have reached at A = 5, It can be verified that following the given rule of the game, 4 is the maximum number of possible moves we can make from reaching A = 0 to A = 5.

Input: X = 8
Output: 5
Explanation: The possible sequence of values of X can be: 0 -> 1 -> 2 -> 3 -> 5 -> 8, Which takes 5 moves. It can be verified that there is no possible number of moves greater than 5, such that following the above-defined rule, We can reach from X = 0 to X = 8.

Approach: Implement the idea below to solve the problem:

The problem is based on mathematical logic. The idea of the problem is defined as below in the Concept of approach section.

Concept of Approach:

The problem is mathematical logic based and can be solved by using some mathematical observations. The algorithm and observation for solving the problem is defined below for the input value of X in variable N.

Take variables A, B, count = 0

// Observation
while (A ≤ X) 

{
  A = Math.sqrt(B) + 1
  B = B + X * X

  count++

}

The maximum number of moves will be count – 1

Follow the steps to solve the problem:

  • Initialize integers A, B, and Count as 0.
  • While (A ≤  X) follow below – mentioned steps under the scope of the while loop:
    • A = sqrt( B ) + 1
    • B = B + (X * X)
    • Count = Count + 1
  • Return Count – 1.

Below is the code to implement the approach:

C++




// C++ code to implement the approach
#include <bits/stdc++.h>
using namespace std;
 
int MaxMoves(int n)
{
    // X and Y Variables of game
    int x = 0;
    int y = 0;
 
    // Count variable for storing
    // Max number of possible moves
    int count = 0;
 
    // Implementing logic
    while (x <= n) {
        x = sqrt(y) + 1;
        y = y + (x * x);
        count++;
    }
 
    // Returing maximum moves
    return count - 1;
}
 
int main()
{
    // Input value of X as variable N
    // after making certain moves of game
    int N = 5;
 
    // Function call
    cout << MaxMoves(N);
}


Java




// Java code to implement the approach
import java.util.*;
public class GFG {
    // Driver code
    public static void main(String args[])
    {
        // Input value of X as variable N
        // after making certain moves of game
        int N = 5;
 
        // Function call
        System.out.println(MaxMoves(N));
    }
 
    static int MaxMoves(int n)
    {
        // X and Y Variables of game
        long x = 0;
        long y = 0;
 
        // Count variable for storing
        // Max number of possible moves
        int count = 0;
 
        // Implementing logic
        while (x <= n) {
            x = (long)Math.sqrt(y) + 1;
            y = y + x * x;
            count++;
        }
 
        // Returing maximum moves
        return count - 1;
    }
}


Python3




# Python3 code to implement the approach
import math
 
def max_moves(n):
    # X and Y Variables of game
    x = 0
    y = 0
 
    # Count variable for storing
    # Max number of possible moves
    count = 0
 
    # Implementing logic
    while x <= n:
        x = int(math.sqrt(y)) + 1
        y = y + (x * x)
        count += 1
 
    # Returning maximum moves
    return count - 1
 
# Input value of X as variable N
# after making certain moves of game
n = 5
 
# Function call
print(max_moves(n))


C#




using System;
 
public class Program
{
    public static int MaxMoves(int n)
    {
          // X and Y Variables of game   
        int x = 0;
        int y = 0;
       
          // Count variable for storing
        // Max number of possible moves
        int count = 0;
         
       
          // Implementing logic
        while (x <= n)
        {
            x = (int)Math.Sqrt(y) + 1;
            y = y + (x * x);
            count++;
        }
         
          // Returing maximum moves
        return count - 1;
    }
     
    public static void Main()
    {
       
          // Input value of X as variable N
            // after making certain moves of game
        int N = 5;
       
          // Function call
        Console.WriteLine(MaxMoves(N));
    }
}


Javascript




// JavaScript code to implement the approach
function MaxMoves(n) {
// X and Y Variables of game
let x = 0;
let y = 0;
 
// Count variable for storing
// Max number of possible moves
let count = 0;
 
// Implementing logic
while (x <= n) {
x = Math.floor(Math.sqrt(y)) + 1;
y = y + (x * x);
count++;
}
 
// Returning maximum moves
return count - 1;
}
 
// Input value of X as variable N
// after making certain moves of game
const N = 5;
 
// Function call
console.log(MaxMoves(N));


Output

4










Time Complexity: O(1)
Auxiliary Space: O(1) 

Approach: using Binary Search

Concept of Approach:

In this approach, first find the largest sqaure number less than or equal to the current value and update to the
next integer greater than the current value.

Follow the steps to solve the problem:

  • Initialize A and B to 0.
  • Also, initialize the counter to 0.
  • When A < X, do the following:
    1. use the binary search and check if (A+mid)^2 is greater than B.
    2. If yes, update num and search for a smaller number.
    3. If no suitable number is found, break out of the loop.
    4. Otherwise, update A and B and increment the move count.
    5. Increment the counter.
  • Last, print the maximum number of moves.

Below is the code to implement the approach:

C++




#include<bits/stdc++.h>
using namespace std;
 
int main(){
      // Initialize the variables
    int X=5, A=0, B=0, count=0;
 
    while(A<X){
        // Initialize the search range for a suitable number
        int low = 1, high = X-A, mid, num=-1;
        while(low<=high){
            mid = (low+high)/2;
     
            if((A+mid)*(A+mid) > B) {
                
                num = mid;
                high = mid-1;
            }
            else low = mid+1;
        }
        // If no suitable number is found, break out of the loop
        if(num == -1) break;
        // Otherwise, update A and B and increment the move count
        A += num;
        B += A*A;
        count++;
    }
 
    cout<<count<<endl;
    return 0;
}


Java




import java.io.*;
public class Geek {
    public static void main(String[] args) {
        // Initialize the variables
        int X = 5, A = 0, B = 0, count = 0;
        while (A < X) {
            // Initialize the search range for a suitable number
            int low = 1, high = X - A, mid, num = -1;
            while (low <= high) {
                mid = (low + high) / 2;
                if ((A + mid) * (A + mid) > B) {
                    // If the condition is satisfied
                    // update num and shrink the search range
                    num = mid;
                    high = mid - 1;
                } else {
                    // If the condition is not satisfied
                    // expand the search range
                    low = mid + 1;
                }
            }
            // If no suitable number is found
            // break out of the loop
            if (num == -1) {
                break;
            }
            A += num;
            B += A * A;
            count++;
        }
        // Print the final count
        System.out.println(count);
    }
}


Python3




# Python code
 
# Initialize the variables
X = 5
A = 0
B = 0
count = 0
 
while A < X:
    # Initialize the search range for a suitable number
    low = 1
    high = X - A
    num = -1  # Initialize num here
 
    while low <= high:
        mid = (low + high) // 2
 
        if (A + mid) * (A + mid) > B:
            num = mid  # Update num when a suitable number is found
            high = mid - 1
        else:
            low = mid + 1
 
    # If no suitable number is found, break out of the loop
    if num == -1:
        break
    else:
        # Otherwise, update A and B and increment the move count
        A += num
        B += A * A
        count += 1
 
print(count)
 
# This code is contributed by guptapratik


C#




using System;
 
class Program {
    static void Main()
    {
        // Initialize the variables
        int X = 5, A = 0, B = 0, count = 0;
 
        while (A < X) {
            // Initialize the search range for a suitable
            // number
            int low = 1, high = X - A, mid, num = -1;
            while (low <= high) {
                mid = (low + high) / 2;
 
                if ((A + mid) * (A + mid) > B) {
                    num = mid;
                    high = mid - 1;
                }
                else {
                    low = mid + 1;
                }
            }
            // If no suitable number is found, break out of
            // the loop
            if (num == -1)
                break;
            // Otherwise, update A and B and increment the
            // move count
            A += num;
            B += A * A;
            count++;
        }
 
        Console.WriteLine(count);
    }
}


Javascript




function main() {
    // Initialize the variables
    let X = 5, A = 0, B = 0, count = 0;
    while (A < X) {
        // Initialize the search range for a suitable number
        let low = 1, high = X - A, mid, num = -1;
        while (low <= high) {
            mid = Math.floor((low + high) / 2);
            if ((A + mid) * (A + mid) > B) {
                // If the condition is satisfied
                // update num and shrink the search range
                num = mid;
                high = mid - 1;
            } else {
                // If the condition is not satisfied
                // expand the search range
                low = mid + 1;
            }
        }
        // If no suitable number is found
        // break out of the loop
        if (num === -1) {
            break;
        }
        A += num;
        B += A * A;
        count++;
    }
    // Print the final count
    console.log(count);
}
 
// Call the main function
main();


Output

4











Time Complexity: O(X*log(X)), where X is the input integer.

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
12 Oct, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments