Saturday, January 11, 2025
Google search engine
HomeLanguagesDynamic ProgrammingFind maximum points which can be obtained by deleting elements from array

Find maximum points which can be obtained by deleting elements from array

Given an array A having N elements and two integers L and R where, 1\leq a_{x} \leq 10^{5}     and 1\leq L \leq R \leq N     . You can choose any element of the array (let’s say ax) and delete it, and also delete all elements equal to ax+1, ax+2ax+R and ax-1, ax-2ax-L from the array. This step will cost ax points. The task is to maximize the total cost after deleting all the elements from the array.

Examples: 

Input : 2 1 2 3 2 2 1
        L = 1, R = 1
Output : 8
We select 2 to delete, then (2-1)=1 and (2+1)=3 will need to be deleted, 
for given L and R range respectively.
Repeat this until 2 is completely removed. So, total cost = 2*4 = 8.

Input : 2 4 2 9 5
        L = 1, R = 2
Output : 18
We select 2 to delete, then 5 and then 9.
So total cost = 2*2 + 5 + 9 = 18.

Approach: We will find the count of all the elements. Now let’s say an element X is selected then, all elements in the range [X-L, X+R] will be deleted. Now we select the minimum range from L and R and finds up to which elements are to be deleted when element X is selected. Our results will be the maximum of previously deleted elements and when element X is deleted. We will use dynamic programming to store the result of previously deleted elements and use it further. 

Implementation:

C++




// C++ program to find maximum cost after
// deleting all the elements form the array
#include <bits/stdc++.h>
using namespace std;
 
// function to return maximum cost obtained
int maxCost(int a[], int n, int l, int r)
{
 
    int mx = 0, k;
    // find maximum element of the array.
    for (int i = 0; i < n; ++i)
        mx = max(mx, a[i]);
 
    // initialize count of all elements to zero.
    int count[mx + 1];
    memset(count, 0, sizeof(count));
 
    // calculate frequency of all elements of array.
    for (int i = 0; i < n; i++)
        count[a[i]]++;
 
    // stores cost of deleted elements.
    int res[mx + 1];
    res[0] = 0;
 
    // selecting minimum range from L and R.
    l = min(l, r);
 
    for (int num = 1; num <= mx; num++) {
 
        // finds upto which elements are to be
        // deleted when element num is selected.
        k = max(num - l - 1, 0);
 
        // get maximum when selecting element num or not.
        res[num] = max(res[num - 1], num * count[num] + res[k]);
    }
 
    return res[mx];
}
 
// Driver program
int main()
{
    int a[] = { 2, 1, 2, 3, 2, 2, 1 }, l = 1, r = 1;
 
    // size of array
    int n = sizeof(a) / sizeof(a[0]);
 
    // function call to find maximum cost
    cout << maxCost(a, n, l, r);
 
    return 0;
}


Java




//Java program to find maximum cost after
//deleting all the elements form the array
 
public class GFG {
     
    //function to return maximum cost obtained
    static int maxCost(int a[], int n, int l, int r)
    {
 
     int mx = 0, k;
     // find maximum element of the array.
     for (int i = 0; i < n; ++i)
         mx = Math.max(mx, a[i]);
 
     // initialize count of all elements to zero.
     int[] count = new int[mx + 1];
     for(int i = 0; i < count.length; i++)
         count[i] = 0;
 
     // calculate frequency of all elements of array.
     for (int i = 0; i < n; i++)
         count[a[i]]++;
 
     // stores cost of deleted elements.
     int[] res = new int[mx + 1];
     res[0] = 0;
 
     // selecting minimum range from L and R.
     l = Math.min(l, r);
 
     for (int num = 1; num <= mx; num++) {
 
         // finds upto which elements are to be
         // deleted when element num is selected.
         k = Math.max(num - l - 1, 0);
 
         // get maximum when selecting element num or not.
         res[num] = Math.max(res[num - 1], num * count[num] + res[k]);
     }
 
     return res[mx];
    }
 
    //Driver program
    public static void main(String[] args) {
         
        int a[] = { 2, 1, 2, 3, 2, 2, 1 }, l = 1, r = 1;
 
         // size of array
         int n = a.length;
 
         // function call to find maximum cost
         System.out.println(maxCost(a, n, l, r));
    }
}


Python 3




# Python 3 Program to find maximum cost after
# deleting all the elements form the array
 
# function to return maximum cost obtained
def maxCost(a, n, l, r) :
 
    mx = 0
 
    # find maximum element of the array.
    for i in range(n) :
        mx = max(mx, a[i])
 
    # create and initialize count of all elements to zero.
    count = [0] * (mx + 1)
 
    # calculate frequency of all elements of array.
    for i in range(n) :
        count[a[i]] += 1
 
    # stores cost of deleted elements.
    res = [0] * (mx + 1)
    res[0] = 0
 
    # selecting minimum range from L and R.
    l = min(l, r)
 
    for num in range(1, mx + 1) :
 
        # finds upto which elements are to be
        # deleted when element num is selected.
        k = max(num - l - 1, 0)
 
        # get maximum when selecting element num or not.
        res[num] = max(res[num - 1], num * count[num] + res[k])
 
    return res[mx]
 
# Driver code
if __name__ == "__main__" :
 
    a = [2, 1, 2, 3, 2, 2, 1 ]
    l, r = 1, 1
 
    # size of array
    n =  len(a)
 
    # function call to find maximum cost
    print(maxCost(a, n, l, r))
 
# This code is contributed by ANKITRAI1


C#




// C# program to find maximum cost
// after deleting all the elements
// form the array
using System;
 
class GFG
{
 
// function to return maximum
// cost obtained
static int maxCost(int []a, int n,
                   int l, int r)
{
    int mx = 0, k;
     
    // find maximum element
    // of the array.
    for (int i = 0; i < n; ++i)
        mx = Math.Max(mx, a[i]);
     
    // initialize count of all
    // elements to zero.
    int[] count = new int[mx + 1];
    for(int i = 0; i < count.Length; i++)
        count[i] = 0;
     
    // calculate frequency of all
    // elements of array.
    for (int i = 0; i < n; i++)
        count[a[i]]++;
     
    // stores cost of deleted elements.
    int[] res = new int[mx + 1];
    res[0] = 0;
     
    // selecting minimum range
    // from L and R.
    l = Math.Min(l, r);
     
    for (int num = 1; num <= mx; num++)
    {
     
        // finds upto which elements
        // are to be deleted when
        // element num is selected.
        k = Math.Max(num - l - 1, 0);
     
        // get maximum when selecting
        // element num or not.
        res[num] = Math.Max(res[num - 1], num *
                          count[num] + res[k]);
    }
 
return res[mx];
}
 
// Driver Code
public static void Main()
{
    int []a = { 2, 1, 2, 3, 2, 2, 1 };
    int l = 1, r = 1;
 
    // size of array
    int n = a.Length;
 
    // function call to find maximum cost
    Console.WriteLine(maxCost(a, n, l, r));
}
}
 
// This code is contributed
// by inder_verma


Javascript




<script>
 
// Javascript program to find maximum cost after
// deleting all the elements form the array
 
// function to return maximum cost obtained
function maxCost(a, n, l, r)
{
 
    var mx = 0, k;
    // find maximum element of the array.
    for (var i = 0; i < n; ++i)
        mx = Math.max(mx, a[i]);
 
    // initialize count of all elements to zero.
    var count = new Array(mx + 1);
    count.fill(0);
 
    // calculate frequency of all elements of array.
    for (var i = 0; i < n; i++)
        count[a[i]]++;
 
    // stores cost of deleted elements.
    var res = new Array(mx + 1);
    res[0] = 0;
 
    // selecting minimum range from L and R.
    l = Math.min(l, r);
 
    for (var num = 1; num <= mx; num++) {
 
        // finds upto which elements are to be
        // deleted when element num is selected.
        k = Math.max(num - l - 1, 0);
 
        // get maximum when selecting element num or not.
        res[num] = Math.max(res[num - 1],
        num * count[num] + res[k]);
    }
 
    return res[mx];
}
 
var a = [ 2, 1, 2, 3, 2, 2, 1 ];
var l = 1, r = 1;
// size of array
var n = a.length;
 
// function call to find maximum cost
document.write(maxCost(a, n, l, r));
 
// This code is contributed by SoumikMondal
 
</script>


Output

8

Time Complexity: O(max(A))

Auxiliary Space: O(max(A))

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments